Open Access

Bidirectional Control of Myoelectric Prostheses in Upper Limb Amputees: Current Results and Expectations


Cite

1. Micera S, Carpaneto J, Raspopovic S. Control of Hand Prostheses Using Peripheral Information. IEEE Rev Biomed Eng 2010; 3: 48–68.10.1109/RBME.2010.208542922275201Search in Google Scholar

2. Brookmeyer R, Ephraim PL, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States 2005 to 2050. Arch Phys Med Rehabil 2008; 89: 422–29.10.1016/j.apmr.2007.11.00518295618Search in Google Scholar

3. Inkellis E, Low EE, Langhammer C, Morshed S. Incidence and characterization of major upper-extremity amputations in the national trauma data bank. JB JS Open Access 2018; 3(2): e0038.10.2106/JBJS.OA.17.00038614556430280131Search in Google Scholar

4. Atkins D, Heard D, Donovan W. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot 1996; 8: 2–11.10.1097/00008526-199600810-00003Search in Google Scholar

5. Carey S, Lura D, Highsmith J. Differences in myoelectric and body-powered upper-limb prostheses: systematic literature review. J Prosthet Orthot 2017; 29: 14–1610.1097/JPO.0000000000000159Search in Google Scholar

6. Schultz AE, Baade SP, Kuiken TA. Expert opinions on success factors for upper-limb prostheses. J Rehabil Res Dev 2007; 44: 483–89.10.1682/JRRD.2006.08.008718247245Search in Google Scholar

7. Sheehan T. Rehabilitation and prosthetic restoration in upper limb amputation. In: Cifu D. authors. Braddom’s Physical medicine & rehabilitation 5th Ed.; Elsevier 2015; p.182-1835.Search in Google Scholar

8. Antfolk C, Björkman A, Frank S, Sebelius F, Lundborg G, Rosen B. Sensory feedback from a prosthetic hand based on air- mediated pressure from the hand to the forearm skin. J Rehabil Med 2012; 44:702–7.10.2340/16501977-100122729800Search in Google Scholar

9. Witteveen HJ, Rietman HS, Veltink PH. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthet Orthot Int 2015; 39(3): 204–12.10.1177/030936461452226024567348Search in Google Scholar

10. Pasquina PF, Evangelista M, Carvalho AJ, Lockhart J, Griffin S, Nanos G, еt al. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J Neurosci Methods 2015; 244: 85–93.10.1016/j.jneumeth.2014.07.016431737325102286Search in Google Scholar

11. Pezzin LE, Dillingham TR, Mackenzie EJ, Ephraim P, Rossbach P. Use and satisfaction with prosthetic limb devices and related services. Arch Phys Med Rehabil 2004; 85(5): 723–29.10.1016/j.apmr.2003.06.00215129395Search in Google Scholar

12. Lawrence SM, Dhillon GS, Horch KW. Fabrication and characteristics of an implantable polymer-based intrafascicular electrode. J Neurosci Methods 2003; 131: 9–26.10.1016/S0165-0270(03)00231-0Search in Google Scholar

13. Micera S, Rossini MP, Rigosa J, Citi L, Carpaneto L, Raspopovic S, et al. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. Ј Neuro Eng Rehabil 2011; 8(1): 53.10.1186/1743-0003-8-53Search in Google Scholar

14. Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 2010; 121(5): 777–83.10.1016/j.clinph.2010.01.001Search in Google Scholar

15. Rossini PM, Rigosa J, Micera S, Assenza G, Rossini L, Ferreri F. Stump nerve signals during transcranial magnetic motor cortex stimulation recorded in an amputee via longitudinal intrafascicular electrodes. Exp Brain Res 2011; 210 (1): 1–11.10.1007/s00221-011-2571-9Search in Google Scholar

16. Petrini F, Mazzoni A, Rigosa J, Giambattistelli F, Granata G, Barra B, et al. Microneurography as a tool to develop decoding algorithms for peripheral neuro-controlled hand prostheses. BioMedical Engineering OnLine 2019; 18: 44.10.1186/s12938-019-0659-9Search in Google Scholar

17. Boretius T, Badia J, Pascual-Font A, Schuettler M, NavarroX, Yoshida K. A transverse intrafascicular multi-channel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 2010; 26(1):62–9.10.1016/j.bios.2010.05.010Search in Google Scholar

18. Popović I, Isaković M, Živković V, Štrbac M, Radotić M, Bijelić G. Applications of sensory substitution using FES in transradial amputees. Balneoclimatology 2015; 39: 196–200.Search in Google Scholar

19. Shannon G. A myoelectrically-controlled prosthesis with sensory feedback. Med Biol Eng Comput 1979; 17: 73–80.10.1007/BF02440956Search in Google Scholar

20. Flor H, Denke C, Schaefer M, Grusser S. Effect of sensory discrimination training on cortical reorganization and phantom limb pain. The Lancet 2001; 357: 1763–4.10.1016/S0140-6736(00)04890-XSearch in Google Scholar

21. Perović M, Stevanović M, Jevtić T, Štrbac M, Bijelić G, Vučetić C, et al. Electrical stimulation of the forearm: a method for transmitting sensory signals from the artificial hand to the brain. J Automat Control 2013; 21: 13– 18.10.2298/JAC1301013PSearch in Google Scholar

22. Popović I, Isaković M, Simanić I, Štrbac M, Grujičić B, Belić G. Superficial electric stimulation as a feedback from myoelectric prosthesis for improving control of grip force. Balneoclimatology 2016; 196–200.Search in Google Scholar

23. Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices 2013; 10(1); 45–54.10.1586/erd.12.6823278223Search in Google Scholar

24. Luchetti M, Cutti AG, Verni G, Sacchetti R, Rossi N. Impact of Michelangelo prosthetic hand: Findings from a crossover longitudinal study. J Rehabil Res Dev 2015; 52(5): 605–18.10.1682/JRRD.2014.11.028326437448Search in Google Scholar

25. D’Anna E, Popović I, Simanić I, Raspopović S et al. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci Rep 2017; 7: 10930.10.1038/s41598-017-11306-w558995228883640Search in Google Scholar

26. D’Anna E, Giacomo G, Mazzoni A, Strauss I, Iberite F, Patton P. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 2018. doi.org/10.1101/262741.10.1101/262741Search in Google Scholar

27. Oddo CM, Raspopovic S, Artoni F, Mazzoni A, Spigler G, Petrini F, et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. Elife 2016; 5: e09148.10.7554/eLife.09148479896726952132Search in Google Scholar

28. Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med 2014; 6(257): 257re6.10.1126/scitranslmed.300893325298322Search in Google Scholar

29. Schady W, Braune S, Watson S, Torebjörk HE, Schmidt R. Responsiveness of the somatosensory system after nerve injury and amputation in the human hand. Ann Neurol 1994; 36: 68–7510.1002/ana.4103601148024265Search in Google Scholar

30. Clemente F, D’Alonzo M, Controzzi M, Edin B, Cipriani C. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans Neural Syst Rehabil 2016; 24: 1314–22.10.1109/TNSRE.2015.250058626584497Search in Google Scholar

31. Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosen Bioelectron 2010; 26: 62–9.10.1016/j.bios.2010.05.01020627510Search in Google Scholar

32. Raspopović S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Giovanni Di Pino G et al. Restoring natural sensory feedback in real-time bidirectional hand pros-theses. Sci Transl Med 2014; 6: 222.10.1126/scitranslmed.300682024500407Search in Google Scholar

33. Tan D, Schiefer M,Keith M, Anderson JR, Tyler J. A neural interface provides long-term stable natural touch perception. Sci Transl Med 2014; 6: 257.10.1126/scitranslmed.3008669551730525298320Search in Google Scholar

34. Sudipta P, Sanjeev K, Swati B, Soumendu G, Moumita G, Biswarup N, et al. Technical advancement on various bio-signal controlled arm- a review. J Mech Cont Math Sci 2018; 13: 95–111.10.26782/jmcms.2018.06.00007Search in Google Scholar

35. Pilarski P, Ann L Edwards A, Chan KM. Novel control strategies for arm prostheses: A partnership between man and machine. Jpn J Rehabil Med 2015; 52: 91–5.10.2490/jjrmc.52.91Search in Google Scholar

36. Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet 2007; 369: 371–80.10.1016/S0140-6736(07)60193-7Search in Google Scholar

37. Zhou R, Jiang N, Englehartn K, Parker P. A computational model and simulation study of the efferent activity in the brachial nerves during voluntary motor intent. Med Biol Eng Comput 2010; 48: 67–77.10.1007/s11517-009-0555-819937394Search in Google Scholar

38. Kim L, McLeod R, Kiss Z. A new psychometric questionnaire for reporting of somatosensory percepts. J Neural Eng 2018; 15: 9.10.1088/1741-2552/aa966a29076455Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other