1. bookVolume 67 (2018): Issue 1 (December 2018)
Journal Details
License
Format
Journal
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Genotype x Environment interaction, stability, and adaptability in progenies of Eucalyptus urophylla S.T. BLAKE using the AMMI model

Published Online: 05 Jul 2018
Page range: 51 - 56
Journal Details
License
Format
Journal
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English

One of the determinant factors in the success of breeding pro­grams that aim to select genotypes for different geographical regions is understanding the interaction between genotypes and environments (GxE). The objectives of this study were to evaluate GxE interaction, stability, and adaptability, and deter­mine the need for environmental stratification of open pollina­ted progenies of Eucalyptus urophylla. Five progeny tests were established in study areas with different environmental condi­tions in southeast and mid-west Brazil. We used a complete randomized block experimental design with 138 to 167 proge­nies, and variations in the numbers of replicates and plants per plot. The trait measured was diameter at breast height (DBH) at two years of age and the AMMI method was used to determine patterns of GxE interaction. Significant effects were detected for genotypes, environments, and for GxE interaction. The effect of environment was responsible for the greatest propor­tion of the phenotypic variation, followed by the effect of genotypes and GxE interaction. Some progenies with greater productivity and stability were identified, although stability is not associated with productivity. The stratification of the selec­tion in three specific environments is necessary due to the occurrence of a complex GxE interaction.

Keywords

Adebola, P.O., Shegro, A., Laurie, S.M., Zulu, L.N., Pillay, M. (2013). Genotype x en­vironment interaction and yield stability estimate of some sweet potato ([Ipomoea batatas (L.) Lam] breeding lines in South Africa. Journal of Plant Breeding and Crop Science 5(9):182-186. http://dx.doi.org/10.5897/JPBCS2013.0387.10.5897/JPBCS2013.0387Open DOISearch in Google Scholar

Akbarpour, O., Dehghani, H., Sorkhi, B., Gauch Jr., H.G. (2014). Evaluation of gen­otype x environment interaction in barley (Hordeum vulgare L.) based on AMMI model using developed SAS Program. Journal of Agricultural Science and Technology 16(4):909-920. http://jast.modares.ac.ir/article_10897.html.Search in Google Scholar

Akter, A., Hassan, J.M., Kulsum, U.M., Hossain, K., Rahman, M.M. (2014). AMMI Bi­plot analysis for stability of grain yield in hibrid rice (Oryza sativa L.). Rice Research: Open Access 2(2):1-4. http://dx.doi.org/10.4172/jrr.1000126.10.4172/jrr.1000126Open DOISearch in Google Scholar

Assis, T.F., Muro Abad, J.I., Aguiar, A.M. (2015). Melhoramento genético do eu­calipto. In: Schumacher, M.V., Vieira, M. Silvicultura do eucalipto no Brasil. Santa Maria, Brazil: Editora UFSM, 308p. ISBN: 9788573912319.Search in Google Scholar

Chambel, M.R., Climent, L., Alía, R., Valladares, F. (2005). Phenotypic plasticity: a useful framework for understanding adaptation in forest species. Investi­gación agraria: Sistemas y recursos forestales 14(3):334-344. http://dx.doi.org/10.5424/srf/2005143-00924.10.5424/srf/2005143-00924Open DOISearch in Google Scholar

Correia, I., Alía, R., Yan, W., David, T., Aguiar, A., Almeida, M. (2010). Genotype x Environment interactions in Pinus pinaster at age 10 in a multi-environ­ment trial in Portugal: a maximum likelihood approach. Annals of Forest Science 67(6):612-621. http://dx.doi.org/10.1051/forest/2010025.Search in Google Scholar

Crossa, J. (2012). From genotype x environment interaction to gene x environ­ment interaction. Current Genomics 13(3):225-244. http://dx.doi.org/10.2174/138920212800543066.10.2174/138920212800543066Open DOISearch in Google Scholar

Crossa, J., Fox, P.N., Pfeifer, W.H., Rajaram, S., Gauch, H.G. (1991). AMMI adjust­ment for statistical analysis of an international wheat trial. Theoretical Ap­plied of Genetics 81(1):27-37. http://dx.doi.org/10.1007/BF00226108.10.1007/BF00226108Open DOISearch in Google Scholar

Duarte, J.B., Vencovsky, R. (1999). Interação genótipos x ambientes: uma intro­dução a análise AMMI. Ribeirão Preto, Brazil: Sociedade Brasileira de Genéti­ca (Séries Monografias nº 9), 60p.Search in Google Scholar

Fabio, E.S., Volk, T.A., Miller, R.O., Serapiglia, M.J., Gauch, H.G., Van Rees, K.C.J., Hangs, R.D., Amichev, B.Y., Kuzovkina, Y.A., Labrecque, M., Johnson, G.A., Ewy, R.G., Kling, G.J., Smart, L.B. (2017). Genotype x environment interaction analysis of North American shrub willow yield trials confirms superior per­formance of triploid hybrids. GCB Bioenergy 9(2):445-459. https://doi.org/10.1111/gcbb.12344.10.1111/gcbb.12344Open DOISearch in Google Scholar

Funga, A., Tadesse, M., Eshete, M., Fikre, A., Korbu, L., Girma, N., Bekele, D., Mo­hamed, R., Bishaw, Z., Rao, G., Siambi, M., Monyo, E., Gaur, P., Ojiewo, C. (2017). Genotype by environment interaction on yield stability of desi type chickpea (Cicer arietinum L.) at major chickpea producing areas of Ethiopia. Australian Journal of Crop Science 11(2):212-219. http://dx.doi.org/10.21475/ajcs.17.11.02.p297.Search in Google Scholar

Gauch, H.G.J. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science 46(4):1488-1500. http://dx.doi.org/doi: 10.2135/cropsci2005.07-0193.10.2135/cropsci2005.07-0193Open DOISearch in Google Scholar

Gauch, H.G.J., Zobel, R.W. (1997). Identifying mega-environments and targeting genotypes. Crop Science 37:311-326. http://dx.doi.org/10.2135/cropsci1997.0011183X003700020002x.10.2135/cropsci1997.0011183X003700020002xOpen DOISearch in Google Scholar

Gollob, H.F. (1968). A statistical model which combines features of factor analyt­ic and analysis of variance techniques. Psychometrika 33(1):73-115. http://dx.doi.org/10.1007/BF02289676.10.1007/BF02289676Open DOISearch in Google Scholar

Gonçalves, J.L.M., Alvares, C.A., Higa, A.R., Silva, L.D., Alfenas, A.C., Stahl, J., Ferraz, S.F.B., Lima, W.P., Brancalion, P.H.S., Hubner, A., Bouillet, J.P.D., Laclau, J.P., Nouvellon, Y., Epron, D. (2013). Integrating genetic and silvicultural strate­gies to minimize abiotic and biotic constraints in Brazilian eucalypt planta­tions. Forest Ecology and Management 301:6-27, 2013. http://dx.doi.org/101016/jforeco201212030.Search in Google Scholar

Harwood, C. (2011). New introduction - doing right. In: Developing a eucalypt resource Learning from Australia and elsewhere. Ed J Walker Wood Technol­ogy Research Centre, University of Canterbury, Christchurch, New Zealand, 125-136.Search in Google Scholar

Hodge, G.R., Dvorak, W.S. (2015). Provenance variation and within- provenance genetic parameters in Eucalyptus urophylla across 125 test sites in Brazil, Colombia, Mexico, South Africa and Venezuela. Tree Genetics & Genomes 11(3):11-57. http://dx.doi.org/10.1007/s11295-015-0889-3.10.1007/s11295-015-0889-3Open DOISearch in Google Scholar

Inmet. (2017). Instituto Nacional de Meteorologia [online] Banco de dados me­teorológicos para ensino e pesquisa. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep.Search in Google Scholar

Ivković, M., Gapare, W., Yang, H., Dutkowski, G., Buxton, P., Wu, H. (2015). Pattern of genotype by environment interaction for radiate pine in southern Aus­tralia. Annals of Forest Science 72(3):391-401. http:// http://dx.doi.org/10.1007/s13595-014-0437-6.10.1007/s13595-014-0437-6Open DOISearch in Google Scholar

Lemon, J. (2006). Plotrix: a package in the red light district of R. R-News, New York 6(4):8-12.Search in Google Scholar

Li, Y., Suontana, M., Burdon, R.D., Dungey, H.S. (2017). Genotype by environment interactions in forest tree breeding: review of methodology and perspec­tives on research and application. Tree Genetics & Genomes 13(60):1-18. https://doi.org/10.1007/s11295-017-1144-x.10.1007/s11295-017-1144-xOpen DOISearch in Google Scholar

Martinez, D.T., Resende, M.D.V., Costa, R.B., Higa, A.R., Santos, G.A.S., Fier, I.S.N. (2012). Study of the interaction genotype x environment in progenies of Pi­nus taeda by means of the analysis of genetic parameters. Floresta 42(3):539-552.Search in Google Scholar

Melo, E.A.S.C.D., Gonçalves, J.L.M., Rocha, J.H.T., Hakamada, R.E., Bazani, J.H., Wenzel, A.V.A., Ferreira, E.V.D.O., Ferraz, A.V. (2015). Responses of clonal eu­calypt plantations to N, P and K fertilizer application in different edaphocli­matic conditions. Forests 7(2):1-15. https://doi.org/10.3390/f7010002.10.3390/f7010002Open DOISearch in Google Scholar

Mendiburu, F. (2013). Agricolae: statistical procedures for agricultural research. [S.l.:s.n., 200-].Search in Google Scholar

Mitrovic, B., Stanisavljevi, D., Treski, S., Stojakovic, M., Ivanovic, M., Bekavac, G., Rajkovic, M. (2012). Evaluation of experimental maize hybrids tested in multi-location trial using AMMI and GGE biplot analysis. Turkish Journal of Field Crops 17(1):35-40.Search in Google Scholar

Mohammadi, R., Amri, A. (2011). Graphic analysis of trait relations and genotype evaluation in durum wheat. Journal of Crop Improvement 25(6):680-696. https://doi.org/10.1080/15427528.2011.601437.10.1080/15427528.2011.601437Open DOISearch in Google Scholar

Mustapha, M., Bakari, H.R. (2014). Statistical evaluation of genotype by environ­ment interactions for grain yield in millet (Penniisetum glaucum (L.) R. Br.). The International Journal of Engineering and Science 3(9):7-16. http://www.theijes.com/papers/v3-i9/Version-1/B039107016.pdf.Search in Google Scholar

Namkoong, G., Snyder, E.B., Stonecypher, R. (1966). Heritability and gain con­cepts for evaluating breeding systems such as seedling orchards. Silvae Ge­netica 15:76-84. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1966/Vol._15_Heft_3/15_3_76.pdfSearch in Google Scholar

Nunes, A.C.P., Santos, G.A., Resende, M.D.V., Silva, L.D., Higa, A., Assis, T.F. (2016). Estabelecimento de zonas de melhoramento para clones de eucalipto no Rio Grande do Sul. Scientia Forestalis 44(111):563-574. https://doi.org/10.18671/scifor.v44n111.03.Search in Google Scholar

Oliveira, T.W.G., De Paula, R.C., Moraes, M.L.T., Alvares, C.A., Miranda, A.C., Silva, P.H.M. (2018). Stability and adaptability for wood volume in the selection of Eucalyptus saligna in three environments. Pesquisa Agropecuária Brasileira 55 (In Press).Search in Google Scholar

Pinto, D.S., Resende, R.T., Mesquita, A.G.G., Rosado, A.M., Cruz, C.D. (2014). Early selection in tests for growth traits of Eucalyptus urophylla clones test. Sci­entia Forestalis 42(102):251-257.Search in Google Scholar

Pupin, S., Santos, A.V.A., Zaruma, D.U.G., Miranda, A.C., Silva, P.H.M., Marino, C.L., Sebbenn, A.M., Moraes, M.L.T. (2015). Productivity, stability and adaptability in open pollination progenies of Eucalyptus urophylla S.T. Blake. Scientia Forestalis 43(105):127-134.Search in Google Scholar

Rao, P.S., Reddy, P.S., Rathore, A., Reddy, B.V.S., Panwar, S. (2011). Application GGE biplot and AMMI model to evaluate sweet sorghum (Sorghum bicolor) hy­brids for genotype x environment interaction and seasonal adaptation. In­dian Journal of Agricultural Sciences 81(5):438-444. https://core.ac.uk/download/pdf/12102139.pdf.Search in Google Scholar

R, Development Core Team. (2011). R: A Language and Environment for Statisti­cal Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN: 3900051070. http://www.R-project.org/.Search in Google Scholar

Resende, M.D.V. (2007). Software SELEGEN - REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Colombo, Brazil: Embrapa Florestas, 359p. ISBN 9788589281164.Search in Google Scholar

Scanavaca Júnior, L., Garcia, J.N. (2003). Potential for genetic improvement in Eu­calyptus urophylla from the Island Flores. Scientia Forestalis 64:23-32.Search in Google Scholar

Silva, P.H.M., Marco, M., Alvares, C.A., Miranda, A.C., Lee, D.J., Moraes, M.L.T., De Paula, R.C. (2018). Early selection of Eucalyptus grandis families across envi­ronmental conditions (In Press).Search in Google Scholar

Silva, P.H.M., Poggiani, F., Libardi, P.L., Gonçalves, A.N. (2013). Fertilizer manage­ment of eucalypt plantations on sandy soil in Brazil: initial growth and nutri­ent cycling. Forest Ecology and Management 301:67-71. https://doi.org/10.1016/j.foreco.2012.10.033.10.1016/j.foreco.2012.10.033Open DOISearch in Google Scholar

Vencovsky, R., Barriga, P. (1992). Genética biométrica no fitomelhoramento. Ri­beirão Preto, Brazil: Sociedade Brasileira de Genética, 496p.Search in Google Scholar

Vencovsky, R., Ramalho, M.A.P., Toledo, F.H.R.B. (2012). Contribution and per­spectives of quantitative genetics to plant breeding in Brazil. Crop Breeding and Applied Biotechnology 12:7-14. http://dx.doi.org/10.1590/S1984-70332012000500002.10.1590/S1984-70332012000500002Open DOISearch in Google Scholar

Verissimo, M.A.A., Silva, S.D.A., Aires, R.F., Daros, E., Panziera, W. (2012). Adapt­ability and stability of early sugarcane genotypes in Rio Grande do Sul, Bra­zil. Pesquisa Agropecuária Brasileira 47(4):561-568. http://dx.doi.org/10.1590/S0100-204X2012000400012.10.1590/S0100-204X2012000400012Open DOISearch in Google Scholar

Zobel, R.W., Wright, M.J., Gauch, H.G.J. (1988). Statistical analysis of a yield trial. Agronomy Journal 80(3):388-393. http://dx.doi.org/10.2134/agronj1988.00021962008000030002x.10.2134/agronj1988.00021962008000030002xOpen DOISearch in Google Scholar

Weihs, C., Ligges, U., Luebke, K., Raabe, N. (2005). klaR Analyzing German busi­ness cycles. In: Baier D, Decker R, Schmidt-Thieme L (Ed.). Data analysis and decision support. Berlin, Germany: Springer Berlin Heidelberg, p.335-343. https://doi.org/10.1007/3-540-28397-8_36.10.1007/3-540-28397-8_36Open DOISearch in Google Scholar

Yan, W., Kang, M.S. (2002). GGE biplot analysis: A graphical tool for breeders, ge­neticists, and agronomists. Florida, United States: CRC press. 288p. ISBN 0849313384.Search in Google Scholar

Yan, W., Pageau, D., Frégeau Reid, J., Durand, J. (2011). Assessing the representa­tiveness and repeatability of test locations for genotype evaluation. Crop Science 51(4):1603-1610. http://dx.doi.org/10.2135/cropsci2011.01.0016.10.2135/cropsci2011.01.0016Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo