1. bookVolume 67 (2018): Issue 1 (December 2018)
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year
access type Open Access

Maintenance of genetic diversity in Eucalyptus urophylla S. T. Blake populations with restriction of the number of trees per family

Published Online: 07 Jun 2018
Page range: 34 - 40
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year

Our aim was to verify the effect on gain and genetic diversity through the restriction of the number of trees per family in selection, in order to compose an elite population of Eucalyp­tus urophylla in two trials under distinct management levels. We studied 166 open-pollinated families of E. urophylla in Anhembi, Sao Paulo State, Brazil under commercial practices, and the same families in Selvíria, Mato Grosso do Sul State, Bra­zil under lower management level (mainly no mineral fertiliza­tion). Mortality, height and diameter at breast height (DBH) were measured. DBH was analyzed by the REML/BLUP to select the best 25 trees, with four levels of tree restriction per family (no restriction; 1; 2 and 3 per family). We evaluated heritability; genetic gain and effective size of number of total and private alleles; observed and expected heterozygosity; coancestry and fixation index. A large difference in survival (48 and 83 %) and productivity (MAI of 26 and 44 m3ha-1y-1) was observed bet­ween trials due to the different levels of management applied. The highest restriction in number of individuals per family caused a small decrease in gain, corresponding to 7 % in the more productive trial and 3 % in the less productive one. Observed and expected heterozygosity, coancestry and fixati­on index were not significantly (lower than 5 %) affected by the restriction in both sites. The restriction of one tree per family allowed different alleles to be kept in the selected population and higher effective population size in order to insure variation for the next generations.


Bertoncini, G.H., Tambarussi, E.V., Sebbenn, A.M., Moraes, C.B., Moraes, M.L.T., Furtado, E.L., Mori, E.S. (2017). Rust resistance and mating system in Euca­lyptus grandis Hill ex Maiden progênies. Scientia Forestalis 45(114):405- 4013. Available at http://dx.doi.org/10.18671/scifor.v45n114.16.Search in Google Scholar

Borralho, N.M.G., Cotterill, P.P., Kanowski, P.J. (1992). Genetic parameters and gains expected from selection for dry weight in Eucalyptus globulus ssp globulus in Portugal. Forest Sience 38: 80-94. Available at http://dx.doi.org/10.1093/forestscience/ DOISearch in Google Scholar

Brawner, J.T., Lee, D.J., Hardner, C.N. (2011). Relationships between early growth and Quambalaria shoot blight tolerance in Corymbia citriodora progeny tri­als established in Queensland, Australia. Tree Genetic and Genomes 7:759- 772. Available at http://dx.doi.org/10.1007/s11295-011-0372-8.10.1007/s11295-011-0372-8Open DOISearch in Google Scholar

Brawner, J.T., Lee, D.J., Meder, R., Almeida, A.C., Dieters, M.J. (2013). Classifying genotype by environment interactions for targeted germplasm deploy­ment with a focus on Eucalyptus. Euphytica 191:403-414. Available at http://dx.doi.org/10.1007/s10681-013-0892-4.10.1007/s10681-013-0892-4Open DOISearch in Google Scholar

Campoe, O.C., Munhoz, J.S.B., Alvares, C.A., Carneiro, R.L., Mattos, E.M., Ferez, A.P.C., Stape, J.L. (2016). Meteorological seasonality affecting individual tree growth in forest plantations in Brazil. Forest Ecology and Management 380:149-160. Available at http://dx.doi.org/10.1016/jforeco201608048.10.1016/jforeco201608048Open DOISearch in Google Scholar

Cockerham, C.C. (1969). Variance of gene frequencies. Evolution 23:72-84. Avail­able at https://doi.org/10.1111/j.1558-5646.1969.tb03496.x.10.1111/j.1558-5646.1969.tb03496.xOpen DOISearch in Google Scholar

Costa RMLD, Estopa RA, Biernaski FA, Mori ES (2016) Predição de ganhos genéti­cos em progênies de Eucalyptus benthamii Maiden & Cambage por difer­entes métodos de seleção. Scientia Forestalis 44:105-113. Available at http://dx.doi.org/10.18671/scifor.v44n109.10.Search in Google Scholar

Costa e Silva, J., Hardner, C., Tilyard, P., Potts, B.M. (2011). The effects of age and environment on the expression of inbreeding depression in Eucalyptus globulus. Heredity 107:50-60. Available at http://doi: 10.1038/hdy.2010.15410.1038/hdy.2010.154Open DOISearch in Google Scholar

Denison, N.P., Kietzka, J.E. (1993). The use and importance of hybrid intensive forestry in South Africa. South Africa Forest Journal 165:55-60. Available at http://dx.doi.org/10.1080/0038216719939629390.10.1080/0038216719939629390Open DOISearch in Google Scholar

Doyle, J.J., Doyle, J.L. (1987). A rapid DNA isolation procedure for small quanti­ties of fresh leaf tissue. Phytochem Bulletin 9:1-15 Ferreira Filho, P.J., Wilcken, C.F., Neves, D.A., Pogetto, M.H., Carmo, J.B., Guerreiro, J.C., Zanuncio, J.C. (2015). Does diatomaceous earth control leaf-cutter ants (Hymenoptera: Formicidae) in the Eucalyptus plantations? Journal of Eco­nomic Entomology 108: 1-5. Available at http://dx.doi.org/10.1093/jee/tov06610.1093/jee/tov066Open DOISearch in Google Scholar

Ferreira, M. (2015). A aventura dos Eucaliptos. In: Schumacher MV, Viera M (eds) Silvicultura do Eucalipto no Brasil. Santa Maria, Brasil, UFSM, pp 13-48. ISBN 9788573912234Search in Google Scholar

Flores, T.B., Alvares, C.A., Souza, V.C., Stape, J.L. (2016). Eucalyptus no Brasil: zon­eamento climático e guia para identificação Piracicaba. IPEF. 448p.Search in Google Scholar

Garcia, L.G., Ferraz, S.F.B., Alvares, C.A., Ferraz, K.M.P.M.B., Higa, R.C.V. (2014). Modeling suitable climate for Eucalyptus grandis under future climates sce­narios in Brazil. Scientia Forestalis 42:503-511.Search in Google Scholar

Gonçalves, J.L.M., Alvares, C.A., Higa, A.R., Silva, L.D., Alfenas, A.C., Stahl, J., Ferraz, S.F.B., Lima, W.P., Brancalion, P.H.S., Hubner, A., Bouillet, J-P.D., Laclau, J-P., Nouvellon, Y., Epron, D. (2013). Integrating genetic and silvicultural strate­gies to minimize abiotic and biotic constraints in Brazilian eucalypt planta­tions. Forest Ecology and Management 301: 6-27. Available at http://dx.doi.org/101016/jforeco201212030.Search in Google Scholar

Gonzaga, J.M.S., Manoel, R.O., Sousa, A.C.B., Souza, A.P., Moraes, M.L.T., Freitas, M.L.M., Sebbenn, A.M. (2016). Pollen contamination and nonrandom mat­ing in a Eucalyptus camaldulensis Dehnh seedlings seed orchard. Silvae Ge­netica 65(1):1-11. Available at http://dx.doi.org/10.1515/sg-2016-0001.10.1515/sg-2016-0001Open DOISearch in Google Scholar

Goudet, J (1995). FSTAT (Version 1.2): A computer program to calculate F-statis­tics. Heredity 86:485-486. Available at https://doi.org/10.1093/oxfordjournals.jhered.a11162710.1093/oxfordjournals.jhered.a111627Open DOISearch in Google Scholar

Hardner, C.M., Potts, B.M. (1995). Inbreeding depression and changes in varia­tion after selfing in Eucalyptus globulus ssp. globulus. Silvae Genetica 44:46-54.Hardy, O.J., Vekemans, X. (2002). SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2:618-620. Available at https://doi.org/10.1046/j.1471-8286.2002.00305.x10.1046/j.1471-8286.2002.00305.xOpen DOISearch in Google Scholar

Harwood, C. (2011). New introductions - doing it right. In: Developing a eucalypt resource Learning from Australia and elsewhere. Ed J Walker Wood Technol­ogy Research Centre, University of Canterbury, Christchurch, New Zealand, 125-136.Search in Google Scholar

Hedrick, P.W., Hellsten, U., Grattapaglia, D. (2016). Examining the cause of high inbreeding depression: analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis. New Phytologist 209:600-611. Avail­able at http://doi: 10.1111/nph.13639.10.1111/nph.13639Open DOISearch in Google Scholar

Jurskis, V. (2005). Eucalypt decline in Australia and a general concept of tree de­cline and dieback. Forest Ecology and Management 215:1-20. Available at http://dx.doi.org/101016/jforeco200504026.Search in Google Scholar

Kumar, S., Richardson, T.E. (2005). Inferring relatedness and heritability using molecular markers in radiata pine. Molecular Breeding 15:55-64. Available at http://dx.doi.org/10.1007/s11032-004-2059-410.1007/s11032-004-2059-4Open DOISearch in Google Scholar

Laclau, J-P., Da Silva, E.A., Lambais, G.R., Bernoux, M., Le Maire, G., Stape, J.L., Jean-Pierre, B., Gonsalves, J.L.M., Jourdan, C., Nouvellon, Y. (2013). Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Frontiers in Plant Science 4:423. Available at https://doi.org/10.1017/CBO9780511623400.007.Search in Google Scholar

Lande, R., Barrowclough, G.F. (1987). Effective population size, genetic variation, and their use in population management. Viable Population for Conserva­tion. pp 87-124. Available at https://doi.org/10.1017/CBO9780511623400.007.10.1017/CBO9780511623400.007Open DOISearch in Google Scholar

Lindgren, D., Gea, L., Jefferson, P. (1996). Loss of genetic diversity monitored by status number. Silvae Genetica 45:42-59.Search in Google Scholar

Luikart, G., Allendorf, F.W., Cornuet, J.M., Sherwin, W.B. (1998). Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89:238-247. Available at http://doi: 10.1093/jhered/ DOISearch in Google Scholar

Melo, E.A.S.C.D., Gonçalves, J.L.M., Rocha, J.H.T., Hakamada, R.E., Bazani, J.H., Wenzel, A.V.A., Ferreira, E.V.D.O., Ferraz, A.V. (2015). Responses of clonal eu­calypt plantations to N, P and K fertilizer application in different edaphocli­matic conditions. Forests 7(1):2. Available at http://doi: 10.3390/f7010002.10.3390/f7010002Open DOISearch in Google Scholar

Oda, S., Menck, A.L.M., Vencovsky, R. (1989). Problemas no melhoramento genético clássico do eucalipto em função da alta intensidade de seleção. IPEF, 41:42.Search in Google Scholar

Payn, K.G., Dvorak, W.S., Janse, B.J., Myburg, A.A. (2008). Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genetic and Genomic 4:519-530. Available at http://dx.doi.org/101007/s11295-007-0128-7.Search in Google Scholar

Potts, B.M., Dungey, H.S. (2004). Hybridization of Eucalyptus: Key issues for breeders and geneticists. New Forest 27:115-138. Available at http://dx.doi.org/101023/A:1025021324564.Search in Google Scholar

Pupin, S., dos Santos, A.V.D.A., Zaruma, D.U.G., Miranda, A.C., Silva, P.H.M., Mari­no, C.L., Sebbenn, A.M., Moraes, M.L.T. (2015). Productivity stability and adaptability in open pollination progenies of Eucalyptus urophylla S.T. Blake. Scientia Forestalis 43: 127-134Search in Google Scholar

Pupin, S., Rosse, L.N., Souza, I.C.G., Cambuim, J., Marino, C.L., Moraes, M.L.T., Seb­benn, A.M. (2017). Analysis of Mendelian inheritance and genetic linkage in microsatellite loci of Eucalyptus urophylla S.T. Blake. Genetics and Molecu­lar Research 16(3): https://doi.org/10.4238/gmr1603971310.4238/gmr16039713Open DOISearch in Google Scholar

Resende, M.D.V. (2007). Software SELEGEN-REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Colombo: Embrapa Florestas.Search in Google Scholar

Resende, M.D.V. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology 164:330-339. Avail­able at http://dx.doi.org/10.1590/1984-70332016v16n4a49.10.1590/1984-70332016v16n4a49Open DOISearch in Google Scholar

Sebbenn, A.M. (2002). Numero de arvores matrizes e conceitos genéticos na co­leta de sementes para reflorestamentos com espécies nativas. Revista do In­stituto Florestal 14:115-132.Search in Google Scholar

Silva, P.H.M., Lee, D.J., Miranda, A.C., Marino, C.L., Moraes, M.L.T., de Paula, R.C. (2017). Sobrevivência e crescimento inicial de espécies de eucalipto em dif­erentes condições climáticas. Scientia Forestalis 75: 563-571. Available at http://dx.doi.org/10.18671/scifor.v45n115.13Search in Google Scholar

Silva, P.H.M., Campoe, O.C., de Paula, R.C., Lee, D.J. (2016). Seedling growth and physiological responses of sixteen eucalypt taxa under controlled water re­gime. Forests 7(6):110. Available at http://doi.org/10.3390/f7060110.10.3390/f7060110Open DOISearch in Google Scholar

Silva, P.H.M., Shepherd, M., Grattapaglia, D., Sebbenn, A.M. (2015). Use of genetic markers to build a new generation of Eucalyptus pilularis breeding popula­tion. Silvae Genetica 64:170-181. Available at https://doi.org/10.1515/sg-2015-0016.10.1515/sg-2015-0016Open DOISearch in Google Scholar

Silva, P.H.M., Miranda, A.C., Moraes, M.L.T., Furtado, E.L., Stape, J.L., Alvares, C.A., Sentelhas, P.S., Mori, E.S., Sebbenn, A.M. (2013). Selecting for rust (Puccinia psidii) resistance in Eucalyptus grandis in São Paulo state Brazil. Forest Ecol­ogy and Management 303:91-97. Available at http://dx.doi.org/101016/jforeco201304002.Search in Google Scholar

Silva, P.H.M., Poggiani, F., Libardi, P.L., Gonçalves, A.N. (2013a). Fertilizer manage­ment of eucalypt plantations on sandy soil in Brazil: initial growth and nutri­ent cycling. Forest Ecology and Management 301:67-71. Available at http://dx.doi.org/10.1590/s0100-204x2016000900001.10.1590/s0100-204x2016000900001Open DOISearch in Google Scholar

Steane, D.A., Conod, N., Jones, R.C., Vaillancourt, R.E., Potts, B.M. (2006). A com­parative analysis of population structure of a forest tree, Eucalyptus globu­lus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genetic and Genomics 2:30-38. Available at http://dx.doi.org/10.1007/s11295-005-0028-7.10.1007/s11295-005-0028-7Open DOISearch in Google Scholar

Wingfield, M.J., Slippers, B., Hurley, B.P., Coutinho, T.A., Wingfield, B.D., Roux, J. (2008). Eucalypt pests and diseases: growing threats to plantation produc­tivity. South Forest Journal of Forest Science 70:139-144. Available at http://dx.doi.org/10.2989/SOUTH.FOR.2008. DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo