Open Access

Influence of the Selected Sieving Parameters on the Sieving Efficiency of Material MCC Avicel PH102


Cite

[1] Keshun, L. 2009, “Some factors affecting sieving performance and efficiency”, Powder Technology 193 (2), pp. 208-213, 2009. Search in Google Scholar

[2] Dong, K. J., Yu, A. B., Brake, I. DEM simulation of particle flow on a multi-deck banana screen”, Minerals Engineering 22 (11), pp. 910 – 920, 2009.10.1016/j.mineng.2009.03.021 Search in Google Scholar

[3] Lawinska, K., Wodzinski, P., Modrzewski, R. 2014. “Verification of the mathematical model of the screen blocking process”, Powder Technology 256 (4), pp. 506 – 511, 2014. Search in Google Scholar

[4] CHEN, Z. – TONG, X. – LI, Z. 2020. Numerical investigation on the sieving performance of elliptical vibrating screen”, Processes 8, p. 1151, 2020. Search in Google Scholar

[5] Davoodi, A. et al. “Effects of screen decks’ aperture shapes and materials on screening efficiency, Minerals Engineering 139, 2019.10.1016/j.mineng.2019.01.026 Search in Google Scholar

[6] Jafari, A. – Nezhad, V. S. “Employing DEM to study the impact of different parameters on the screening efficiency and mesh wear”, Powder Technology vol. 297, pp. 126 – 143, 2016.10.1016/j.powtec.2016.04.008 Search in Google Scholar

[7] Dong, H. “Influence of vibration mode on the screening process. In: International Journal of Mining Science and Technology” 1, p. 95-98, 2013.10.1016/j.ijmst.2013.01.014 Search in Google Scholar

[8] WANG, W. et al. “Mechanism of overcoming plugging and optimization of parameters for rigid-flexible coupled elastic screening of moist fine coal”, Powder Technology 376, pp. 113 – 125, 2020.10.1016/j.powtec.2020.08.025 Search in Google Scholar

[9] Makinde, O. A. et al. “Review of vibrating screen development trends: Linking the past and the future in mining machinery industries”, International Journal of Mineral Processing 145, pp. 17 – 22, 2015.10.1016/j.minpro.2015.11.001 Search in Google Scholar

[10] Jiang, H. et al. “Dynamic characteristics of an equal-thickness screen with a variable amplitude and screening analysis”, Powder Technology 311, pp. 239 – 246, 2017.10.1016/j.powtec.2017.01.022 Search in Google Scholar

[11] Elskamp, F. “Benchmarking of process models for continuous screening based on discrete element simulations”, Minerals Engineering 83, pp. 78 – 96, 2015.10.1016/j.mineng.2015.08.011 Search in Google Scholar

[12] Li, J. et al. “Discrete particle motion on sieves—a numerical study using the DEM simulation”, Powder Technology 133 (1 – 3), pp. 190 – 202, 2003.10.1016/S0032-5910(03)00092-5 Search in Google Scholar

[13] Yoshida, Y. et al. “Estimation equation for sieving rate based on the model for undersized particles passing through vibrated particle bed”, Journal of chemical engineering of Japan 46 (2), pp. 116 – 126, 2013.10.1252/jcej.12we104 Search in Google Scholar

[14] Wang, Z. et al. “Impact of screening coals on screen surface and multi-index optimization for coal cleaning production”, Journal of Cleaner Production 187, pp. 562 – 575, 2018.10.1016/j.jclepro.2018.03.238 Search in Google Scholar

[15] Soldinger, M. “Influence of particle size and bed thickness on the screening process”, Minerals Engineering 13 (3), pp. 297 – 312, 2000.10.1016/S0892-6875(00)00009-1 Search in Google Scholar

[16] Harish, H. et al. “The screening efficiency if linear vibrating screen – An experimental investigation”, AIP Conference Proceedings 2204 – 040002, 2020. Search in Google Scholar

[17] Macho, O., Čierny, M., Gabrišová, Ľ., Juriga, M., Ružinský, R., Peciar, P. “Dynamic Image Analysis to Determine Granule Size and Shape, for Selected High Shear Granulation Process Parameters”, Strojnícky časopis – Journal of Mechanical Engineering 69 (4), pp. 57 – 64, 2019. DOI: 10.2478/scjme-2019-004310.2478/scjme-2019-0043 Search in Google Scholar

[18] Peciar, P., Juriga, M., Guštafík, A., Kohútová, M., Jezsó, K. “Procesné strojníctvo – Príklady”, Bratislava: Spektrum STU, 2021. p.127, ISBN 978-80-227-5081-3 (In Slovak) Search in Google Scholar

[19] Chen, Y., Tong, “Modelling screening efficiency with vibrational parameters based on DEM 3D simulation”, Mining Science and Technology (China) 20 (4), pp. 615 – 620, 2010.10.1016/S1674-5264(09)60254-4 Search in Google Scholar

[20] Elskamp, F., Kruggel–Emden, H. “Review and benchmarking of process models for batch screening based on discrete element simulations”, Advanced Powder Technology 26 (3), pp. 679 – 697, 2015.10.1016/j.apt.2014.11.001 Search in Google Scholar

[21] Djokovic, J. M. et al. “Screening efficiency analysis of vibrosieves with the circular vibrations”, Civil and Environmental Engineering 13 (1), pp. 77 – 83, 2017.10.1515/cee-2017-0010 Search in Google Scholar

[22] Yin, Z., Zhang, H., Han, T. “Simulation of particle flow on an elliptical vibrating screen using the discrete element method”, Powder Technology 302, pp. 443 – 454, 2016.10.1016/j.powtec.2016.08.061 Search in Google Scholar

[23] Malahayati, N. et al.. “Textural properties of laksa noodle as affected by rice flour particle size”, International Food Research Journal 18 (4), pp. 1309 – 1312, 2011. Search in Google Scholar

[24] Tóth, Á. et al. “Effects of particle size on the quality of winter wheat flour, with a special focus on macro- and microelement concentration”, Communications in Soil Science and Plant Analysis 37, pp. 2659 – 2672, 2006. Search in Google Scholar

[25] Wills, B. A., Napier–Munn, T. “Wills’ Mineral Processing Technology”, 7th edition. Chapter 8 – Industrial screening, Butterworth-Heinemann, pp. 186 – 202, 2005.10.1016/B978-075064450-1/50010-2 Search in Google Scholar

[26] Xiao, J., Tong, X. “Particle stratification and penetration of a linear vibrating screen by the discrete element method”, International Journal of Mining Science and Technology 22 (3), pp. 357 – 362, 2012.10.1016/j.ijmst.2012.04.013 Search in Google Scholar

[27] Zhang, B. et al. “Intelligent prediction of sieving efficiency in vibrating screens”, Shock and Vibration 2016, 2016. DOI: 10.1155/2016/917541710.1155/2016/9175417 Search in Google Scholar

[28] Krok, A. et al. “An experimental investigation of temperature rise during compaction of pharmaceutical powders”, International Journal of Pharmaceutics 513 (1 – 2), pp. 97 – 108, 2016.10.1016/j.ijpharm.2016.09.01227601333 Search in Google Scholar

[29] Rojas, J. et al. “Evaluation of several microcrystalline celluloses obtained from agricultural by-products”, Journal of Advanced Pharmaceutical Technology & Research 2 (3), pp. 144 – 150, 2011.10.4103/2231-4040.85527321771122171310 Search in Google Scholar

[30] Masuda, H. et al. “Powder Technology Handbook”, 3rd edition. Boca Raton, Florida: CRC Press. p. 878, 2006. ISBN-10: 1-57444-782-3. Search in Google Scholar

[31] Barbosa-Cánovas, G. V. et al.. “Food Powders”, 1st edition. New York: Kluwer Academic/Plenum Publishers. p. 372, 2005. ISBN: 0-306-47806-4. Search in Google Scholar

[32] Peciar, P. et al. “Analysis of pharmaceutical excipient MCC Avicel PH102 using compaction equations”, Strojnícky časopis – Journal of Mechanical Engineering 66 (1), pp. 65 – 82, 2016. DOI: 10.1515/scjme-2016-001210.1515/scjme-2016-0012 Search in Google Scholar

[33] Rhodes, M. “Introduction to Particle Technology”, 2nd edition. Chichester: John Wiley & Sons Ltd. p. 450, 2008. ISBN: 978-0-470-01427-1. Search in Google Scholar

[34] Nofrerias, I. et al. “Comparison between Microcrystalline Celluloses of different grades made by four manufacturers using the SeDeM diagram expert system as a pharmaceutical characterization tool”, In: Powder Technology 342, pp. 780 – 788, 2019.10.1016/j.powtec.2018.10.048 Search in Google Scholar

eISSN:
2450-5471
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics