Open Access

Conduction in nanostructured La1−x SrxFeO3 (0 ≤ x ≤ 1)


Cite

We investigated electrical properties of nanostructured La1−x SrxFeO3 (0 ≤ x ≤ 1) from 300 K–400 K. The nanostructured La1−x SrxFeO3 (0 ≤ x ≤ 1) was synthesized by citrate gel method requiring no pH control. X-ray diffraction pattern showed that single phase LaFeO3 with an orthorhombic structure was formed. The structure changed into rhombohedral for x = 0.5 and it became cubic for x = 1.0. For x ≤ 0.5, our material showed non-linear current-voltage characteristics and for x > 0.5 it showed linear current-voltage characteristics. Poole Frenkel type conduction mechanism was found to be operative in LaFeO3 from 300 K–400 K. The experimental values of field-lowering coefficient were by 2.56–6.41 times higher than the predicted value and were attributed to the presence of localized fields. The increase in conductance with Sr content was due to formation of Fe4+ ions in addition to Fe3+ with the increase in Sr content. Impedance spectroscopy and ac conductivity analysis of La1−x SrxFeO3 (0 ≤ x ≤ 1) was also carried out in the temperature range from 300 K–400 K and frequency was varied from 20 Hz - 2 MHz. The ac conduction followed the correlated barrier hopping model in La0.9Sr0.1FeO3.

eISSN:
2083-124X
ISSN:
2083-1331
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties