Open Access

Mechanical Properties of Alkali Activated Material Based on Red Clay and Silica Gel Precursor


Cite

[1] Podolsky Z., et al. State of the art on the application of waste materials in geopolymer concrete. Case Stud. Constr. Mater. 2021:15:e00637. https://doi.org/10.1016/j.cscm.2021.e0063710.1016/j.cscm.2021.e00637 Search in Google Scholar

[2] Vaičiukynienė D., et al. Porous alkali-activated materials based on municipal solid waste incineration ash with addition of phosphogypsum powder. Constr. Build. Mater. 2021:301:123962. https://doi.org/10.1016/j.conbuildmat.2021.12396210.1016/j.conbuildmat.2021.123962 Search in Google Scholar

[3] Bajpai R., et al. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020:254:120147. https://doi.org/10.1016/j.jclepro.2020.12014710.1016/j.jclepro.2020.120147 Search in Google Scholar

[4] Vegere K., et al. Alkali-activated metakaolin as a zeolite-like binder for the production of adsorbents. Inorganics 2019:7(12):141. https://doi.org/10.3390/inorganics712014110.3390/inorganics7120141 Search in Google Scholar

[5] Bocullo V., et al. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Mater. Chem. Phys. 2021:258:123846. https://doi.org/10.1016/j.matchemphys.2020.12384610.1016/j.matchemphys.2020.123846 Search in Google Scholar

[6] Gailitis R., et al. Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite. Mech. Compos. Mater. 2020:56(1):85–92. https://doi.org/10.1007/s11029-020-09862-w10.1007/s11029-020-09862-w Search in Google Scholar

[7] Dietel J., et al. The importance of specific surface area in the geopolymerization of heated illitic clay. Appl. Clay Sci. 2017:139:99–107. https://doi.org/10.1016/j.clay.2017.01.00110.1016/j.clay.2017.01.001 Search in Google Scholar

[8] Azevedo A. R. G., et al. Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. J. Build. Eng. 2020:29:101156. https://doi.org/10.1016/j.jobe.2019.10115610.1016/j.jobe.2019.101156 Search in Google Scholar

[9] Borg R. P.. et al. Alkali-Activated Material Based on Red Clay and Silica Gel Waste. W. Bio. Val. 2020:11(6):2973– 2982. https://doi.org/10.1007/s12649-018-00559-910.1007/s12649-018-00559-9 Search in Google Scholar

[10] Choeycharoen P., et al. Superior properties and structural analysis of geopolymer synthesized from red clay. Chiang Mai J. Sci. 2019:46(6):1234–1248. Search in Google Scholar

[11] Ounissi C., et al. Potential use of Kebilian clay reserves ( southern Tunisia ) for the production of geopolymer materials. Clay Miner. 2020:55(2):101–111. https://doi.org/10.1180/clm.2020.1410.1180/clm.2020.14 Search in Google Scholar

[12] Mohammed S. Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Cons. Buil. Mat. 2017:140:10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.07810.1016/j.conbuildmat.2017.02.078 Search in Google Scholar

[13] Hu N., et al. The influence of alkali activator type, curing temperature and gibbsite on the geopolymerization of an interstratified illite-smectite rich clay from Friedland. Appl. Clay Sci. 2017:135:386–393. https://doi.org/10.1016/j.clay.2016.10.02110.1016/j.clay.2016.10.021 Search in Google Scholar

[14] Eliche-Quesada D., et al. Effects of an Illite Clay Substitution on Geopolymer Synthesis as an Alternative to Metakaolin. J. Mater. Civ. Eng. 2021:33(5):04021072. https://doi.org/10.1061/(ASCE)MT.1943-5533.000369010.1061/(ASCE)MT.1943-5533.0003690 Search in Google Scholar

[15] Sedmale G., et al. Application of differently treated illite and illite clay samples for the development of ceramics. Appl. Clay Sci. 2017:146:397–403. https://doi.org/10.1016/j.clay.2017.06.01610.1016/j.clay.2017.06.016 Search in Google Scholar

[16] Emmerich K. Thermal analysis in the characterization and processing of industrial minerals. European Mineralogical Union Notes In Mineralogy 2011:9(1):129–170. https://doi.org/10.1180/EMU-notes.9.510.1180/EMU-notes.9.5 Search in Google Scholar

[17] Keppert M., et al. Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content. Appl. Clay Sci. 2018:161:82–89. https://doi.org/10.1016/j.clay.2018.04.01910.1016/j.clay.2018.04.019 Search in Google Scholar

[18] Vitola L., et al. Low-calcium, porous, alkali-activated materials as novel pH stabilizers for water media. Minerals 2020:10(11):935. https://doi.org/10.3390/min1011093510.3390/min10110935 Search in Google Scholar

[19] Vaičiukyniene D., et al. Utilization of by-product waste silica in concrete - based materials. Mater. Res. 2012:15(4):561–567. https://doi.org/10.1590/S1516-1439201200500008210.1590/S1516-14392012005000082 Search in Google Scholar

[20] Rudelis V., et al. The prospective approach for the reduction of fluoride ions mobility in industrial waste by creating products of commercial value. Sustain. 2019:11(3):16–18. https://doi.org/10.3390/su1103063410.3390/su11030634 Search in Google Scholar

[21] Rattanasak U., Chindaprasirt P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 2009:22(12):1073–1078. https://doi.org/10.1016/j.mineng.2009.03.02210.1016/j.mineng.2009.03.022 Search in Google Scholar

[22] Delgado-Plana P., et al. Effect of activating solution modulus on the synthesis of sustainable geopolymer binders using spent oil bleaching earths as precursor. Sustain. 2021:13(13):7501. https://doi.org/10.3390/su1313750110.3390/su13137501 Search in Google Scholar

[23] Conconi M. S., et al. Thermal behavior (TG-DTA-TMA), sintering and properties of a kaolinitic clay from Buenos Aires Province, Argentina. Ceramica 2019:65(374):227–235. https://doi.org/10.1590/0366-6913201965374262110.1590/0366-69132019653742621 Search in Google Scholar

[24] Bumanis G., Bajare D., Korjakins A. Influence of the carbonate-free clay calcination temperature and curing conditions on the properties of alkali-activated mortar. Proc. International Scientific Conference “Innovative Materials, Structures and Technologies” 2014. https://doi.org/10.7250/iscconstrs.2014.0410.7250/iscconstrs.2014.04 Search in Google Scholar

[25] Ntah Z. L. E., et al. Characterization of some archaeological ceramics and clay samples from Zamala -Far-northern part of Cameroon (West Central Africa). Ceramica 2017:63(367):413–422.10.1590/0366-69132017633672192 Search in Google Scholar

[26] Bumanis G., Goljandin D., Bajare D. The properties of mineral additives obtained by collision milling in disintegrator. Key Engineering Materials 2017:721:327–331. https://doi.org/10.4028/www.scientific.net/KEM.721.32710.4028/www.scientific.net/KEM.721.327 Search in Google Scholar

[27] Zhang Z., et al. Efflorescence : A Critical Challenge for Geopolymer Applications? Proc. Concr. Inst. Aust. Bienn. Natl. Conf. 2013. Search in Google Scholar

[28] Sen Lv X., et al. Inhibition of Efflorescence in Na-Based Geopolymer Inorganic Coating. ACS Omega 2020:5(24):14822–14830. https://doi.org/10.1021/acsomega.0c0191910.1021/acsomega.0c01919731560232596620 Search in Google Scholar

[29] Bumanis G., Bajare D., Locs J. The effect of activator on the properties of low-calcium alkali-activated mortars. Key Eng. Mater. 2014:604:169–172. https://doi.org/10.4028/www.scientific.net/KEM.604.16910.4028/www.scientific.net/KEM.604.169 Search in Google Scholar

[30] Krahl T., Kemnitz E. Aluminium fluoride – the strongest solid Lewis acid: structure and reactivity. Catal. Sci. Technol. 2017:7(4):773–796. https://doi.org/10.1039/C6CY02369J10.1039/C6CY02369J Search in Google Scholar

[31] Borg R. P., et al. Preliminary investigation of geopolymer binder from waste materials. Rev. Rom. Mater. Rom. J. Mater. 2017:47(3):370–378. Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other