1. bookVolume 23 (2019): Issue 1 (March 2019)
Journal Details
License
Format
Journal
eISSN
2255-8837
First Published
26 Mar 2010
Publication timeframe
2 times per year
Languages
English
access type Open Access

Cost Effective Method for Toxicity Screening of Pharmaceutical Wastewater Containing Inorganic Salts and Harmful Organic Compounds

Published Online: 15 Jul 2019
Volume & Issue: Volume 23 (2019) - Issue 1 (March 2019)
Page range: 52 - 63
Journal Details
License
Format
Journal
eISSN
2255-8837
First Published
26 Mar 2010
Publication timeframe
2 times per year
Languages
English
Abstract

Pharmaceutical wastewater biological treatment plants are stressed with multi-component wastewater and unexpected variations in wastewater flow, composition and toxicity. To avoid operational problems and reduced wastewater treatment efficiency, accurate monitoring of influent toxicity on activated sludge microorganisms is essential. This paper outlines how to predict highly toxic streams, which should be avoided, using measurements of biochemical oxygen demand (BOD), if they are made in a wide range of initial concentration. The results indicated that wastewater containing multivalent Al3+ cations showed a strong toxic effect on activated sludge biocenosis irrespectively of dilutions, while toxicity of phenol and formaldehyde containing wastewater decreased considerably with increasing dilution. Activated sludge microorganisms were not sensitive to wastewater containing halogenated sodium salts (NaCl, NaF) and showed high treatment capacity of saline wastewater. Our findings confirm that combined indicators of contamination, such as chemical oxygen demand (COD), alone do not allow evaluating potential toxic influence of wastewater. Obtained results allow identifying key inhibitory substances in pharmaceutical wastewater and evaluating potential impact of new wastewater streams or increased loading on biological treatment system. Proposed method is sensitive and cost effective and has potential for practical implementation in multiproduct pharmaceutical wastewater biological treatment plants.

Keywords

[1] Neumegen R. A., Fernández-Alba A. R., Chisti Y. Toxicities of Trichlosan, Phenol, and Copper Sulfate in Activated Sludge. Environmental Toxicology 2005:20(2):160–164. doi:10.1002/tox.2009010.1002/tox.2009015793824Open DOISearch in Google Scholar

[2] Davies P. S., Murdoch F. The increasing importance of assessing toxicity in determining sludge health and management policy. Measurement and Control 2002:35(8):238–242. doi:10.1177/00202940020350080410.1177/002029400203500804Search in Google Scholar

[3] Katritzky A. R., et al. Estimating the toxicities of organic chemicals in activated sludge process. Water Research 2010:44(8):2451–2460. doi:10.1016/j.watres.2010.01.00910.1016/j.watres.2010.01.00920153498Search in Google Scholar

[4] Jurga A., Gemza N., Janiak K. A concept development of an early warning system for toxic sewage detection. E3S Web of Conferences 2017:17(00036):1–8. doi:10.1051/e3sconf/2017170003610.1051/e3sconf/20171700036Open DOISearch in Google Scholar

[5] Sanganyado E., Lu Z., Fu Q., Schlenk D., Gan J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research 2017:124:527–542. doi:10.1016/j.watres.2017.08.00310.1016/j.watres.2017.08.00328806704Open DOISearch in Google Scholar

[6] Kraigher B., Kosjek T., Heath E., Kompare B., Mandic-Mulec I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research 2008:42(17):4578–4588. doi:10.1016/j.watres.2008.08.00610.1016/j.watres.2008.08.00618786690Open DOISearch in Google Scholar

[7] Vasiliadou I. A., Molina R., Martinez F., Melero J. A., Stathopoulou P. M., Tsiamis G. Toxicity assessment of pharmaceutical compounds on mixed culture from activated sludge using respirometric technique: The role of microbial community structure. Science of The Total Environment 2018:630:808–819. doi:10.1016/j.scitotenv.2018.02.09510.1016/j.scitotenv.2018.02.09529494982Open DOISearch in Google Scholar

[8] Rozitis Dz., Strade E. COD reduction ability of microorganisms isolated from highly loaded pharmaceutical wastewater pre-treatment process. Journal of Materials and Environmental Science 2015:6(2):507–512.Search in Google Scholar

[9] Tekin H., et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials 2006:136(2):258–265. doi:10.1016/j.jhazmat.2005.12.01210.1016/j.jhazmat.2005.12.01216423452Open DOISearch in Google Scholar

[10] Lefebvre O., et al. Biological treatment of pharmaceutical wastewater from the antibiotics industry. Water Science and Technology 2014:69(4):855–861. doi:10.2166/wst.2013.72910.2166/wst.2013.72924569287Search in Google Scholar

[11] Ma K., Qin Z., Zhao Z., Zhao C., Liang S. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. Chemosphere 2016:158:163–170. doi:10.1016/j.chemosphere.2016.05.05210.1016/j.chemosphere.2016.05.05227262686Open DOISearch in Google Scholar

[12] Shi X., Yeap T. S., Huang S., Chen J., Ng H. Y. Pretreatment of saline antibiotic wastewater using marine microalga. Bioresource Technology 2018:258:240–246. doi:10.1016/j.biortech.2018.02.11010.1016/j.biortech.2018.02.110Open DOISearch in Google Scholar

[13] Ren S. Assessing wastewater toxicity to activated sludge: recent research and developments. Environment International 2004:30(8):1151–1164. doi:10.1016/j.envint.2004.06.00310.1016/j.envint.2004.06.003Search in Google Scholar

[14] Sirtori C., et al. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research 2009:43(3):661–668. doi:10.1016/j.watres.2008.11.01310.1016/j.watres.2008.11.013Open DOISearch in Google Scholar

[15] Cēbere B., Faltiņa E., Zelčāns N., Kalniņa D. Toxicity tests for ensuring successful industrial wastewater treatment plant operation. Environmental and Climate Technologies 2009:3(3):41–47. doi:10.2478/v10145-009-0005-810.2478/v10145-009-0005-8Open DOISearch in Google Scholar

[16] Oller I., Malato S., Sánchez-Pérez J. A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review. Science of Total Environment 2011:409(20):4141–4166. doi:10.1016/j.scitotenv.2010.08.06110.1016/j.scitotenv.2010.08.061Open DOISearch in Google Scholar

[17] Philp J. C., et al. Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Analytica Chimica Acta 2003:487(1):61–74. doi:10.1016/S0003-2670(03)00358-110.1016/S0003-2670(03)00358-1Open DOISearch in Google Scholar

[18] Xiao Y., De Araujo C., Sze C. C., Stuckey D. C. Toxicity measurement in biological wastewater treatment processes: A review. Journal of Hazardous Materials 2015:286:15–29. doi:10.1016/j.jhazmat.2014.12.03310.1016/j.jhazmat.2014.12.033Open DOISearch in Google Scholar

[19] Hassan S. H. A., Van Ginkel S. W., Hussein M. A. M., Abskharon R., Oh S. E. Toxicity assessment using different bioassays and microbial biosensors. Environment International 2016:92–93:106–118. doi:10.1016/j.envint.2016.03.00310.1016/j.envint.2016.03.003Open DOISearch in Google Scholar

[20] Kungolos A. Evaluation of toxic properties of industrial wastewater using on-line respirometry. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering 2005:40(4):869–880. doi:10.1081/ESE-20004829210.1081/ESE-200048292Open DOISearch in Google Scholar

[21] Gutiérrez M., Etxebarria J., de las Fuentes L. Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research 2002:36(4):919–924. doi:10.1016/S0043-1354(01)00299-810.1016/S0043-1354(01)00299-8Open DOISearch in Google Scholar

[22] Meherdad F., et al. Identification of Bacterial Population of Activated Sludge Process and Their Potentials in Pharmaceutical Effluent Treatment. British Biotechnology Journal 2014:4(3):317–324. doi:10.9734/BBJ/2014/791310.9734/BBJ/2014/7913Open DOISearch in Google Scholar

[23] Surerus V., Giordano G., Teixeira L. A. C. Activated sludge inhibition capacity index. Brazilian Journal of Chemical Engineering 2014:31(2):385–392. doi:10.1590/0104-6632.20140312s0000251610.1590/0104-6632.20140312s00002516Open DOISearch in Google Scholar

[24] Abdalla K. Z., Hammam G. Correlation between Biochemical Oxygen Demand and Chemical Oxygen Demand for Various Wastewater Treatment Plants in Egypt to Obtain the Biodegradability Indices. International Journal of Sciences: Basic and Applied Research 2014:13(1):42–48.Search in Google Scholar

[25] Mangkoedihardjo S. Biodegradability Improvement of Industrial Wastewater Using Hyacinth. Journal of Applied Sciences 2006:6:1409–1414. doi:10.3923/jas.2006.1409.141410.3923/jas.2006.1409.1414Open DOISearch in Google Scholar

[26] Cui W., Cui Z., Zhang N., Ma Q., Liu L., Zhang X. A new efficient technology for refractory phenol-formaldehyde resin wastewater treatment. RSC Advances 2016:6(23):19078–19088. doi:10.1039/C5RA21502A10.1039/521502Open DOISearch in Google Scholar

[27] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Formaldehyde. Atlanta: U.S. Department of Health and Human Services, Public Health Service, 1999.Search in Google Scholar

[28] Eiroa M., Vilar A., Amor L., Kennes C., Veiga M. C. Biodegradation and effect of formaldehyde and phenol on the denitrification process. Water Research 2005:39(2–3):449–455. doi:10.1016/j.watres.2004.09.01710.1016/j.watres.2004.09.017Open DOISearch in Google Scholar

[29] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Phenol. Atlanta: U.S. Department of Health and Human Services, Public Health Service, 2008.Search in Google Scholar

[30] Yoong E. T., Lant P. A., Greenfield P. F. In situ respirometry in an SBR treating wastewater with high phenol concentrations. Water Research 2000:34(1):239–245. doi:10.1016/S0043-1354(99)00142-610.1016/S0043-1354(99)00142-6Open DOISearch in Google Scholar

[31] Hussain A., Dubey S. K., Kumar V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resources and Industry 2015:11:81–90. doi:10.1016/j.wri.2015.05.00210.1016/j.wri.2015.05.002Open DOISearch in Google Scholar

[32] Pradeep N. V., et al. Biological removal of phenol from wastewaters: a mini review. Applied Water Science 2015:5(2):105–112. doi:10.1007/s13201-014-0176-810.1007/s13201-014-0176-8Open DOISearch in Google Scholar

[33] Heys K. A., Shore R. F., Pereira M. G., Jones K. C., Martin F. L. Risk assessment of environmental mixture effects. RSC Advances 2016:6(53):47844–47857. doi:10.1039/C6RA05406D10.1039/605406Open DOISearch in Google Scholar

[34] Kargi F. Enhanced biological treatment of saline wastewater by using halophilic bacteria. Biotechnology Letters 2002:24(19):1569–1572. doi:10.1023/A:102037942191710.1023/A:1020379421917Open DOISearch in Google Scholar

[35] Lefebvre O., Moletta R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research 2006:40(20):3671–3682. doi:10.1016/j.watres.2006.08.02710.1016/j.watres.2006.08.027Open DOISearch in Google Scholar

[36] Shi X., Lefebvre O., Ng K. K., Ng H.Y. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresource Technology 2014:153:79–86. doi:10.1016/j.biortech.2013.11.04510.1016/j.biortech.2013.11.045Open DOISearch in Google Scholar

[37] Zhang X., Gao J., Zhao F., Zhao Y., Li Z. Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment. Journal of Environmental Sciences 2014:26(6):1369–1374. doi:10.1016/S1001-0742(13)60613-010.1016/S1001-0742(13)60613-0Open DOISearch in Google Scholar

[38] Wang R., et al. Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms. Bioresource Technology 2016:204:65–70. doi:10.1016/j.biortech.2015.12.06210.1016/j.biortech.2015.12.06226773376Open DOISearch in Google Scholar

[39] Ochoa-Herrera V., et al. Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Research 2009:43(13):3177–3186. doi:10.1016/j.watres.2009.04.03210.1016/j.watres.2009.04.03219457531Open DOISearch in Google Scholar

[40] Negrea A., et al. Studies Concerning the Aluminium Ions Removal from Waste Water. Chemical Bulletin of "POLITEHNICA" University of Timişoara 2005:50:148–51.Search in Google Scholar

[41] Pour P. G., Takassi M. A., Hamoule T. Removal of Aluminum from Water and Industrial Waste Water. Oriental Journal of Chemistry 2014:30(3):1365–1369. doi:10.13005/ojc/30035610.13005/ojc/300356Search in Google Scholar

[42] Olaniran A. O., Balgobind A., Pillay B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International Journal of Molecular Sciences 2013:14(5):10197–10228. doi:10.3390/ijms14051019710.3390/ijms140510197367683623676353Open DOISearch in Google Scholar

[43] Jaishankar M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda K. N. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 2014:7(2):60–72. doi:10.2478/intox-2014-000910.2478/intox-2014-0009442771726109881Open DOISearch in Google Scholar

[44] Rosseland B. O., Eldhuset T. D., Staurnes M. Environmental effects of aluminium. Environmental Geochemistry and Health 1990:12(1–2):17–27. doi:10.1007/BF0173404510.1007/BF0173404524202562Open DOISearch in Google Scholar

[45] Sparling D. W. Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants. London: Academic Press, 2016.Search in Google Scholar

[46] Comber S. D. W., Gardner M. J., Churchley J. Aluminium speciation: implications of wastewater effluent dosing on river water quality. Chemical Speciation & Bioavailability 2005:17(3):117–128. doi:10.3184/09542290578277487410.3184/095422905782774874Open DOISearch in Google Scholar

[47] Klimek B., et al. The toxicity of aluminium salts to Lecane inermis rotifers: are chemical and biological methods used to overcome activated sludge bulking mutually exclusive? Archives of Environmental Protection 2013:39(3):127–138. doi:10.2478/aep-2013-002410.2478/aep-2013-0024Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo