[Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Bjorksten, B., Engstrand, L., Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy, 44 (6), 842–850.10.1111/cea.1225324330256]Search in Google Scholar
[Aguilera-Méndez, A. (2019). Nonalcoholic hepatic steatosis: A silent disease. Rev. Med. Inst. Mex. Seguro Soc., 56 (6), 544–549.]Search in Google Scholar
[Aller, R., De Luis, D. A., Izaola, O., Conde, R., Gonzalez Sagrado, M., Primo, D., De La Fuente, B., Gonzalez, J. (2011). Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: A double blind randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci., 15 (9), 1090–1095.]Search in Google Scholar
[Anonymous (2011). Codex Alimentarius: Milk and milk products. 2nd ed. World Health Organization, Food and Agriculture Organization of the United Nations, Rome. 248 pp.]Search in Google Scholar
[Anonymous (2019a). Food data, version 4, 2019, National Food Institute, Technical University of Denmark. https://frida.fooddata.dk/?lang=en (accessed 10 March 2020).]Search in Google Scholar
[Anonymous (2019b). FoodData Central, 2019. Department of Agriculture, Agricultural Research Service. fdc.nal.usda.gov (accessed 10 March 2020).]Search in Google Scholar
[Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der, Veeken, J., deRoos, P., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J., Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504, 451–455.10.1038/nature12726386988424226773]Search in Google Scholar
[Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K. (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 500 (7461), 232–236.]Search in Google Scholar
[Bakircioglu, D., Topraksever, N., Yurtsever, S., Kizildere, M., Kurtulus, Y. B. (2018). Investigation of macro, micro and toxic element concentrations of milk and fermented milks products by using an inductively coupled plasma optical emission spectrometer, to improve food safety in Turkey. Microchem. J., 136, 133–138.10.1016/j.microc.2016.10.014]Search in Google Scholar
[Batt, C. A., Tortorello, M.-L. (2014). Encyclopedia of Food Microbiology. Second Edition, Academic Press, Oxford. 3248 pp.]Search in Google Scholar
[Bourrie, B. C., Willing, B. P., Cotter, P. D. (2016). The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol., 7, 647.10.3389/fmicb.2016.00647485494527199969]Search in Google Scholar
[Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., Guy, C. D., Seed, P. C., Rawls, J. F., David, L. A., Hunault, G., Oberti, F., Calčs, P., Diehl, A. M. (2016). The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 63 (3), 764–775.10.1002/hep.28356497593526600078]Search in Google Scholar
[Byrne, C. D., Targher, G. (2015). NAFLD: A multisystem disease. J. Hepatol., 62 (1 Suppl), S47–64.10.1016/j.jhep.2014.12.01225920090]Search in Google Scholar
[Cais-sokolinska D., Wójtowski, J., Pikul J. (2016). Rheological, texture and sensory properties of kefir from mare’s milk and its mixtures with goat and sheep milk. Mljekarstvo, 66, 272–28110.15567/mljekarstvo.2016.0403]Search in Google Scholar
[Carasi, P., Racedo, S. M., Jacquot, C., Romanin, D. E., Serradell, M. A., Urdaci M. C. (2015). Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J. Immunol. Res., 2015, 361604.]Search in Google Scholar
[David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563.10.1038/nature12820395742824336217]Search in Google Scholar
[de Oliveira Leite, A. M., Miguel, L., Peixoto, R. S., Rosado, A. S., Silva, J. T., Margaret, V., Paschoalin, F. (2013). Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Brazilian J. Microbiol,, 44, 341–349.10.1590/S1517-83822013000200001383312624294220]Search in Google Scholar
[Del Chierico, F., Vernocchi, P., Dallapiccola, B., Putignani, L. (2014). Mediterranean diet and health: Food effects on gut microbiota and disease control. Int. J. Mol. Sci., 15 (7), 11678–11699.10.3390/ijms150711678413980724987952]Search in Google Scholar
[Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A., 104, 13780–13785.10.1073/pnas.0706625104195945917699621]Search in Google Scholar
[Gevers, D., Kugathasan, S., Denson, L. A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S. J., Yassour, M. et al. (2014). The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe, 15 (3), 382–392.10.1016/j.chom.2014.02.005405951224629344]Search in Google Scholar
[Hamet, M. F., Londero, A., Medrano, M., Vercammen, E., Van Hoorde, K., Garrote, G. L., Huys, G., Vandamme, P., Abraham, A. G. (2013). Application of culture-dependent and culture independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains. Food Microbiol., 36, 327–334.10.1016/j.fm.2013.06.02224010614]Search in Google Scholar
[Hamet, M. F., Medrano, M., Pérez, P. F., Abraham, A. G. (2016). Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Benef. Microbes, 7, 237–246.10.3920/BM2015.010326689227]Search in Google Scholar
[Hillman E. T., Lu H., Yao T., Nakatsu C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes Environ., 32 (4), 300–313.10.1264/jsme2.ME17017574501429129876]Search in Google Scholar
[Irigoyen, A., Arana, I., Castiella, M., Torre, P., Ib, F.C. (2005). Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem., 90, 613–620.10.1016/j.foodchem.2004.04.021]Search in Google Scholar
[Jeong, D., Kim, D. H., Kang, I. B., Kim, H., Song, K. Y., Kim, H. S., Seo, K. H. (2017). Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct., 8 (2), 680–686.10.1039/C6FO01559J]Search in Google Scholar
[Jia, L., Vianna, C. R., Fukuda, M., Berglund, E. D., Liu, C., Tao, C., Sun, K., Liu, T., Harper, M. J., Lee, C. E., Lee, S., Scherer, P. E., Elmquist, J. K. (2014). Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat. Commun., 5, 3878.10.1038/ncomms4878408040824815961]Search in Google Scholar
[Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C. J., Fagerberg, B., Nielsen, J., Bäckhed, F. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature,498, 99–103.10.1038/nature1219823719380]Search in Google Scholar
[Kim, D. H., Jeong, D., Kim, H., Seo, K. H. (2019). Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Crit. Rev. Food Sci. Nutr., 59 (11), 1782–1793.10.1080/10408398.2018.142816829336590]Search in Google Scholar
[Klimenko, N. S., Tyakht, A. V., Popenko, A. S., Vasiliev, A. S., Altukhov, I. A., Ischenko, D. S., Shashkova, T. I., Efimova, D. A., Nikogosov, D. A., Osipenko, D. A. et al. (2018). Microbiome responses to an uncontrolled short-term diet intervention in the frame of the citizen science project. Nutrients, 10 (5). pii: E576.]Search in Google Scholar
[Korsak, N., Taminiau, B., Leclercq, M., Nezer, C., Crevecoeur, S., Ferauche, C., Detry, E., Delcenserie, V., Daube, G. (2015). Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments. J. Dairy Sci.,98, 3684–3689.10.3168/jds.2014-906525828663]Search in Google Scholar
[Kowalska-Duplaga, K., Gosiewski, T., Kapusta, P., Sroka-Oleksiak, A., Wædrychowicz, A., Pieczarkowski, S., Ludwig-Słomczyńska, A. H., Wołkow, P. P., Fyderek, K. (2019). Differences in the intestinal micro-biome of healthy children and patients with newly diagnosed Crohn’s disease. Sci. Rep., 9, 18880.]Search in Google Scholar
[Liu, J. R., Wang, S. Y., Chen, M. J., Yueh, P. Y., Lin, C. W. (2006). The anti-allergenic properties of milk kefir and soymilk kefir and their beneficial effects on the intestinal microflora. J. Sci. Food Agric., 86, 2527–2533.10.1002/jsfa.2649]Search in Google Scholar
[Lopez-Legarrea, P., Fuller, N. R., Zulet, M. A., Martinez, J. A., Caterson, I. D. (2014). The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac. J. Clin. Nutr., 23 (3), 360–368.]Search in Google Scholar
[Ma, Y. Y., Li, L., Yu, C. H., Shen, Z., Chen, L. H., Li, Y. M. (2013). Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J. Gastroenterol., 19 (40), 6911–6918.10.3748/wjg.v19.i40.6911381249324187469]Search in Google Scholar
[Maeda, H., Zhu, X., Omura, K., Suzuki, S., Kitamura, S. (2008). Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors, 22 (1–4), 197–200.]Search in Google Scholar
[Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., Cotter, P. D. (2013). Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS ONE, 8, e69371.10.1371/journal.pone.0069371371665023894461]Search in Google Scholar
[Marth, E. H., Steele, J. L. (2001). Applied Dairy Microbiology.2nd edn. Marcel Dekker, New York, 317 pp.10.1201/9781482294606]Search in Google Scholar
[Matijašić, B. B., Obermajer, T., Lipoglavšek, L., Grabnar, I., Avguštin, G., Rogelj, I. (2014). Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur. J. Nutr., 53 (4), 1051–1064.10.1007/s00394-013-0607-624173964]Search in Google Scholar
[Maukonen, J., Kolho, K. L., Paasela, M., Honkanen, J., Klemetti, P., Vaarala, O., Saarela, M. (2015). Altered fecal microbiota in paediatric inflammatory bowel disease. J. Crohn’s Colitis,9 (12), 1088–1095.10.1093/ecco-jcc/jjv14726351391]Search in Google Scholar
[Miele, L., Valenza, V., La Torre, G., Montalto, M., Cammarota, G., Ricci, R., Mascianà, R., Forgione, A., Gabrieli, M. L., Perotti, G., Vecchio, F. M., Rapaccini, G., Gasbarrini, G., Day, C. P., Grieco, A. (2009). Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 49 (6), 1877–1887.10.1002/hep.2284819291785]Search in Google Scholar
[Moschen, A. R., Kaser, S., Tilg, H. (2013). Non-alcoholic steatohepatitis: A microbiota-driven disease. Trends Endocrinol. Metab., 24 (11), 537–545.10.1016/j.tem.2013.05.00923827477]Search in Google Scholar
[Mujagic, Z., Vila, A. V., Falony, G., Vieira-Silva, S., Wang, J., Imhann, F., Brandsma, E., Nakamoto, N., Schnabl, B. (2016). Does the intestinal microbiota explain differences in the epidemiology of liver disease between East and West? Inflamm. Intest. Dis., 1 (1), 3–8.]Search in Google Scholar
[Nishida, A., Inoue, R., Inatomi, O., Bamba S., Naito, Y., Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol., 11, 1–10.10.1007/s12328-017-0813-529285689]Search in Google Scholar
[Noverr, M. C., Huffnagle, G. B. (2004). Does the microbiota regulate immune responses outside the gut? Trends Microbiol., 12 (12), 562–568.]Search in Google Scholar
[Ozcan, T., Sahin, S., Akpinar-Bayizit, A., Yilmaz-Ersan, L. (2019). Assessment of antioxidant capacity by method comparison and amino acid characterization in buffalo milk kefir. Int. J. DairyTechnol., 72, 65–73.]Search in Google Scholar
[Petersen, C., Round, J. L. (2014). Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol., 16 (7), 1024–1033.10.1111/cmi.12308414317524798552]Search in Google Scholar
[Poeta, M., Pierri, L., Vajro, P. (2017). Gut-liver axis derangement in non-alcoholic fatty liver disease. Children (Basel), 4 (8), pii: E66.]Search in Google Scholar
[Quévrain, E., Maubert, M. A., Michon, C., Chain, F., Marquant, R., Tailhades, J., Miquel, S., Carlier, L., Bermśdez-Humarán, L. G., Pigneur, B., Lequin, O. et al. (2016). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut, 65 (3), 415–425.10.1136/gutjnl-2014-307649513680026045134]Search in Google Scholar
[Rajoka, M. S. R., Shy, J., Mehwish, H. M., Zhy, J., Ly, Q., Shao, D., Huang, Q., Yang, H. (2017). Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci. Hum. Wellness, 6 (3), 121–130.10.1016/j.fshw.2017.07.003]Search in Google Scholar
[Rau, M., Rehman, A., Dittrich, M., Groen, A. K., Hermanns, H. M., Seyfried, F., Beyersdorf, N., Dandekar, T., Rosenstiel, P., Geier, A. (2018). Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur. Gastroenterol. J., 6 (10), 1496–1507.10.1177/2050640618804444629793430574320]Search in Google Scholar
[Ritze, Y., Bárdos, G., Claus, A., Ehrmann, V., Bergheim, I., Schwiertz, A., Bischoff, S. C. (2014). Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One,9 (1), e80169.10.1371/journal.pone.0080169390347024475018]Search in Google Scholar
[Rosa, D. D., Dias, M. M. S., Grześkowiak, Ł. M., Reis, S. A., Conceiçao, L. L., Peluzio, M. D. C. G. (2017). Milk kefir: Nutritional, microbiological and health benefits. Nutr. Res. Rev., 30 (1), 82–96.10.1017/S095442241600027528222814]Search in Google Scholar
[Sabaté, J. M., Jouėt, P., Harnois, F., Mechler, C., Msika, S., Grossin, M., Coffin, B. (2008). High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: A contributor to severe hepatic steatosis. Obes Surg., 18 (4), 371–377.10.1007/s11695-007-9398-218286348]Search in Google Scholar
[Sekirov, I., Russell, S. L., Antunes, L. C., Finlay, B. B. (2010). Gut micro-biota in health and disease. Physiol. Rev., 90, 859–904.10.1152/physrev.00045.200920664075]Search in Google Scholar
[Sharma, S., Tripathi, P. (2018). Gut microbiome and type 2 diabetes: Where we are and where to go? J. Nutr. Biochem., 63,101–108.10.1016/j.jnutbio.2018.10.00330366260]Search in Google Scholar
[Shen, W., Gaskins, H. R., McIntosh, M. K. (2014). Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem., 25 (3), 270–280.10.1016/j.jnutbio.2013.09.00924355793]Search in Google Scholar
[Shin, N. R., Whon, T. W., Bae, J. W. (2015). Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol., 33 (9), 496–503.10.1016/j.tibtech.2015.06.01126210164]Search in Google Scholar
[Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J. J., Blugeon, S., Bridonneau, C., Furet, J. P., Corthier, G. et al. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A., 105 (43), 16731–16736.10.1073/pnas.0804812105257548818936492]Search in Google Scholar
[Sun, Y., Geng, W., Pan, Y., Wang, J., Xiao, P., Wang, Y. (2019). Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan kefir improves depression-likebehavior in stressed mice by modulating the gut microbiota. Food Funct., 10 (2), 925–937.10.1039/C8FO02096E30698577]Search in Google Scholar
[Toscano, M., De Grandi, R., Miniello, V. L., Mattina, R., Drago, L. (2017). Ability of Lactobacillus kefiri LKF01 (DSM32079) to colonize the intestinal environment and modify the gut microbiota composition of healthy individuals. Dig. Liver Dis., 49 (3), 261–267.10.1016/j.dld.2016.11.01127939319]Search in Google Scholar
[Turan, I., Dedeli, O., Bor, S., Ilter, T. (2014). Effects of a kefir supplement on symptoms, colonic transit, and bowel satisfaction score in patients with chronic constipation: A pilot study. Turk. J. Gastroenterol., 25, 650–656.10.5152/tjg.2014.699025599776]Search in Google Scholar
[von Schillde, M. A., Hörmannsperger, G., Weiher, M., Alpert, C. A., Hahne, H., Bäuerl, C., van Huynegem, K., Steidler, L., Hrncir, T., Pérez-Martínez, G., Kuster, B., Haller, D. (2012). Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe,1 (4), 387–396.]Search in Google Scholar
[Wang, M. C., Zaydi, A. I., Lin, W. H., Lin, J. S., Liong, M. T., Wu, J. J. (2019). Putative probiotic strains isolated from kefir improve gastrointestinal health parameters in adults: A randomized, single-blind, placebo-controlled study. Probiotics Antimicrob. Proteins. doi: 10.1007/s12602-019-09615-9.10.1007/s12602-019-09615-931749128]Search in Google Scholar
[Wong, V. W., Tse, C. H., Lam, T. T., Wong, G. L., Chim, A. M., Chu, W. C., Yeung, D. K., Law, P. T., Kwan, H. S., Yu, J., Sung, J. J., Chan, H. L. (2013). Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis: A longitudinal study. PLoS One, 8 (4), e62885.10.1371/journal.pone.0062885363620823638162]Search in Google Scholar
[Xing, Z., Tang, W., Yang, Y., Geng, W., Rehman, R. U., Wang, Y. (2018). Colonization and gut flora modulation of Lactobacillus kefiranofaciens ZW3 in the intestinal tract of mice. Probiotics Antimicrob. Proteins, 10 (2), 374–382.10.1007/s12602-017-9288-428578494]Search in Google Scholar
[Yýlmaz, Ý., Dolar, M. E., Özpýnar, H. (2019). Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk. J. Gastroenterol., 30 (3), 242–253.]Search in Google Scholar
[Zhernakova, A., Kurilshikov, A., Bonder, M. J., Tigchelaar, E. F., Schirmer, M., Vatanen, T., Mujagic, Z., Vila, A. V., Falony, G., Vieira-Silva, S. et al. (2016). Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 352, 565–569.10.1126/science.aad3369524084427126040]Search in Google Scholar