1. bookVolume 72 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
eISSN
2255-890X
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Bioactive Compounds in Tomatoes at Different Stages of Maturity

Published Online: 08 May 2018
Volume & Issue: Volume 72 (2018) - Issue 2 (June 2018)
Page range: 85 - 90
Received: 03 Oct 2016
Accepted: 15 Nov 2017
Journal Details
License
Format
Journal
eISSN
2255-890X
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Tomato is known as a vegetable with several health benefits due to its high level of bioactive compounds, especially lycopene, phenolics, and vitamin C. The effect of tomato variety and stage of maturity on the bioactive compounds concentration was studied. Ten tomato varieties were grown and collected from a greenhouse at two different stages of ripening. The obtained results showed that there were significant differences in the mean values between analysed parameters according to the stage of ripening and variety. The highest concentration of vitamin C was determined for variety Sakura F1 at maturity stage, and the lowest for variety Sunstreem F1 for unripe fruits. The concentration of phenols and flavonoids increased during tomato ripening and the highest rate was observed for variety Naget F1 (from 7.86 mg·100g−1 to 14.34 mg·100 g−1 (phenols) and flavonoids from 6.09 mg·100 g−1 to 10.03 mg·100 g−1. The concentration of lycopene in the unripe stage was low (mostly about 1 mg·100 g−1) and the most quantitative changes and the highest concentration of lycopene in full maturity stage was determined for variety SV0946TS (27.11 mg·100 g−1) and variety NectarF1 (16.81 mg·100 g−1).

Keywords

Abete, I., Perez-Cornago, A., Navas-Carretero, S., Bondia-Pons, I., Zulet, M. A., Martinez, J. A. (2013). A regular lycopene enriched tomato sauce consumption influences antioxidant status of healthy young-subjects: A crossover study. J. Funct. Foods, 5, 28–35.10.1016/j.jff.2012.07.007 Search in Google Scholar

Bhowmik, D., Sampath Kumar, K. P., Paswan, S., Srivastava, S. (2012). Tomato — a natural medicine and its health benefits. J. Pharmacogn. Phytochem., 1 (1), 33–43. Search in Google Scholar

Blum, A., Monir, M., Wirsansky, I., Ben-Arzi, S. (2005). The beneficial effects of tomatoes. Eur. J. Intern. Med., 16, 402–404.10.1016/j.ejim.2005.02.01716198897 Search in Google Scholar

Brandt, S., Pek, Z., Barna, E. (2006). Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food. Agric., 86, 568–572.10.1002/jsfa.2390 Search in Google Scholar

Burda, K. (2014). Potential role of carotenoids as antioksidants in human healihand disease. Nutrients, 6, 466–488.10.3390/nu6020466394271124473231 Search in Google Scholar

Choi, S. H., Kim, D. S., Kozukue, N., Kim, H. J., Nishitani, Y., Mizuno, M., Levin, C. E., Friedman, M. (2014). Protein, free amino acid, phenolic, bcarotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. J. Food Compos. Anal., 34, 115–127.10.1016/j.jfca.2014.03.005 Search in Google Scholar

Choi, S. H., Lee, S. H., Kim, H. J., Lee, I. S., Kozukue, N., Levin, C. E., Friedman, M. (2010). Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J. Agric. Food. Chem., 58, 7547–7556.10.1021/jf100162j20560602 Search in Google Scholar

Das, S., Otani, H., Maulik, N., Das, D. K. (2005). Lycopene, tomatoes, and coronary heart disease. Free Radic. Res., 39, 449–455.10.1080/1071576050005368516032783 Search in Google Scholar

De Sousa, F. A., Neves, A. N., De Queiroz, M. E. L. R., Heleno, F. F., Teofilo, R., F., de Pinho, G. P. (2014). Influence of ripening stages of tomatoes in the analysis of pesticides by gas chromatography. J. Braz. Chem. Soc., 25 (8), 1431–1438.10.5935/0103-5053.20140125 Search in Google Scholar

Del Giudice, R., Raiola, A., Tenore, G.C., Frusciante, L., Baron, A., Monti, D.M., Rigano, M. M. (2015). Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. J. Funct. Foods, 18, 83–94.10.1016/j.jff.2015.06.060 Search in Google Scholar

Dumas, Y., Dadomo, M., Di Lucca, G., Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric., 83, 369–382.10.1002/jsfa.1370 Search in Google Scholar

Erba, D., Casiraghi, M.C., Ribas-Agustż, A., Ca’Ceres, R., Marfà, O., Castellari, M. (2013). Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J. Food Compost. Anal., 31, 245–251.10.1016/j.jfca.2013.05.014 Search in Google Scholar

García-Valverde, V., Navarro-Gonzalez, I., Garcia-Alsonso, J., Periago, M. J. (2013). Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol., 6, 391–402.10.1007/s11947-011-0687-3 Search in Google Scholar

Gautier, H., Diakou-Verdin, V., Benard, C., Reich, M., Buret, M., Bourgaud, F., Poessel, J. L., Caris-Veyrat, C., Genard, M. (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem., 56, 1241–1250.10.1021/jf072196t Search in Google Scholar

George, B, Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C. (2011). Changes in the content of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem., 124, 1603–1611.10.1016/j.foodchem.2010.08.024 Search in Google Scholar

Helyes, L., Pék, Z. (2006). Tomato fruit quality and content depend on stage of maturity. HortScience, 41 (6), 1400–1401.10.21273/HORTSCI.41.6.1400 Search in Google Scholar

Kim, D., Jeong, S. W., Lee C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 81, 321–326.10.1016/S0308-8146(02)00423-5 Search in Google Scholar

Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G., Dalessandro, G. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem., 54, 2606–2613.10.1021/jf052920c16569051 Search in Google Scholar

Maršic, N. K., Gašperlin, L., Abram, V., Budič, M., Vidrih, R. (2011). Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric For,. 35, 185–194. Search in Google Scholar

Nagata, M., Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Japan Food Sci. Techn., 39, 925–928.10.3136/nskkk1962.39.925 Search in Google Scholar

Palozza, P., Parrone, N., Catalano, A., Simone, R. (2010). Tomato lycopene and inflammatory cascade: Basic interactions and clinical implications. Curr. Med. Chem., 17, 2547–2563.10.2174/09298671079155604120491642 Search in Google Scholar

Pietta, P. G. (2000). Flavonoids as antioxidant. J. Nat. Prod., 63, 1035–1042.10.1021/np990450910924197 Search in Google Scholar

Ried, K., Fakler, P. (2011). Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of interventional trials. Maturitas, 68, 299–310.10.1016/j.maturitas.2010.11.018 Search in Google Scholar

Sánchez-Rodríguez, E., Ruiz, J.M., Ferreres, F., Moreno, D. A. (2012). Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem., 134, 775–782.10.1016/j.foodchem.2012.02.180 Search in Google Scholar

Shi, J., Dai, Y., Kakuda, Y., Mittal, G., Xue, S.J. (2008). Effect of heating and exposure to light on the stability of lycopene in tomato purene. Food Control, 19, (5), 514–520.10.1016/j.foodcont.2007.06.002 Search in Google Scholar

Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol., 299, 152–178.10.1016/S0076-6879(99)99017-1 Search in Google Scholar

Stewart, A. J., Bozzonet, S., Mullen, W., Jenkins, G. I., Lean, M. E. J., Croizer, A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 48, 2663–2669.10.1021/jf000070p10898604 Search in Google Scholar

Vallverdś-Queralt, A., Medina-Remón, A., Andres-Lacueva, C., Lamuela-Raventos, R. M. (2011). Changes in phenolic profile and antioxidant activity during production of diced tomatoes. Food Chem., 126, 1700–1707.10.1016/j.foodchem.2010.12.06125213947 Search in Google Scholar

Vinha, A. F., Barreira, S. V. P., Costa, A. S. G., Alves, R. C., Oliveira, M. B. P. P. (2014a). Organic versus conventional tomatoes: Influence on phytsicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol., 67, 139–144.10.1016/j.fct.2014.02.01824569070 Search in Google Scholar

Vinha, A. F., Alves, R. C., Barreira, S. V. P., Castro, A., Costa, A. S. G., Oliveira M. B. P. P. (2014b). Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT Food Sci. Technol., 55, 197–202.10.1016/j.lwt.2013.07.016 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo