[[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.]Search in Google Scholar
[[2] M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product functional encryption. In Public Key Cryptography (2), volume 11443 of Lecture Notes in Computer Science, pages 128–157. Springer, 2019.10.1007/978-3-030-17259-6_5]Search in Google Scholar
[[3] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner products. In PKC 2015, LNCS, pages 733–751. Springer, 2015.10.1007/978-3-662-46447-2_33]Search in Google Scholar
[[4] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for inner products: Function-hiding realizations and constructions without pairings. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 597–627, 2018.10.1007/978-3-319-96884-1_20]Search in Google Scholar
[[5] M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product functional encryption from pairings. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 601–626, 2017.10.1007/978-3-319-56620-7_21]Search in Google Scholar
[[6] S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard assumptions. LNCS, pages 333–362. Springer, Aug. 2016.10.1007/978-3-662-53015-3_12]Search in Google Scholar
[[7] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic.]Search in Google Scholar
[[8] S. Badrinarayanan, D. Gupta, A. Jain, and A. Sahai. Multi-input functional encryption for unbounded arity functions. In Advances in Cryptology – ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 27–51. Springer, Dec. 2015.10.1007/978-3-662-48797-6_2]Search in Google Scholar
[[9] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic functions with applications to predicate encryption. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 67–98, 2017.10.1007/978-3-319-63688-7_3]Search in Google Scholar
[[10] M. Barbosa, D. Catalano, and D. Fiore. Labeled homomorphic encryption. In S. N. Foley, D. Gollmann, and E. Snekkenes, editors, Computer Security – ESORICS 2017, pages 146–166, Cham, 2017. Springer International Publishing.10.1007/978-3-319-66402-6_10]Search in Google Scholar
[[11] A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In Advances in Cryptology – ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 470–491. Springer, Dec. 2015.10.1007/978-3-662-48797-6_20]Search in Google Scholar
[[12] D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based encryption: Hiding the function in functional encryption. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 461–478. Springer, Aug. 2013.10.1007/978-3-642-40084-1_26]Search in Google Scholar
[[13] D. Boneh, A. Raghunathan, and G. Segev. Function-private subspace-membership encryption and its applications. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 255–275. Springer, Dec. 2013.10.1007/978-3-642-42033-7_14]Search in Google Scholar
[[14] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Mar. 2011.10.1007/978-3-642-19571-6_16]Search in Google Scholar
[[15] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification over encrypted data. In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015, 2015.10.14722/ndss.2015.23241]Search in Google Scholar
[[16] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Feb. 2014.10.1007/978-3-642-54242-8_3]Search in Google Scholar
[[17] Z. Brakerski and G. Segev. Function-private functional encryption in the private-key setting. In TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of LNCS, pages 306–324. Springer, 2015.10.1007/978-3-662-46497-7_12]Search in Google Scholar
[[18] D. Catalano and D. Fiore. Using linearly-homomorphic encryption to evaluate degree-2 functions on encrypted data. In ACM CCS 15, pages 1518–1529. ACM Press, 2015.10.1145/2810103.2813624]Search in Google Scholar
[[19] N. Chandran, V. Goyal, A. Jain, and A. Sahai. Functional encryption: Decentralised and delegatable. IACR Cryptology ePrint Archive, 2015:1017, 2015.]Search in Google Scholar
[[20] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client functional encryption for inner product. In Advances in Cryptology -ASIACRYPT 2018 - 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, pages 703–732, 2018.10.1007/978-3-030-03329-3_24]Search in Google Scholar
[[21] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of aggregate statistics. In 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages 259–282, 2017.]Search in Google Scholar
[[22] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. Distributed elgamal à la pedersen: Application to helios. In Proceedings of the 12th annual ACM Workshop on Privacy in the Electronic Society, WPES 2013, Berlin, Germany, November 4, 2013, pages 131–142, 2013.10.1145/2517840.2517852]Search in Google Scholar
[[23] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer, Aug. 1998.10.1007/BFb0055717]Search in Google Scholar
[[24] P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner product with full function privacy. LNCS, pages 164–195. Springer, 2016.10.1007/978-3-662-49384-7_7]Search in Google Scholar
[[25] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function securely. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’94, page 522–533, New York, NY, USA, 1994. Association for Computing Machinery.10.1145/195058.195405]Search in Google Scholar
[[26] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Aug. 1984.10.1007/3-540-39568-7_2]Search in Google Scholar
[[27] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. IRON: functional encryption using intel SGX. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 765–782, 2017.]Search in Google Scholar
[[28] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, Oct. 2013.10.1109/FOCS.2013.13]Search in Google Scholar
[[29] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without obfuscation. In E. Kushilevitz and T. Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part II, volume 9563 of LNCS, pages 480–511, Tel Aviv, Israel, Jan. 10–13, 2016. Springer.10.1007/978-3-662-49099-0_18]Search in Google Scholar
[[30] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou. Multi-input functional encryption. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, May 2014.10.1007/978-3-642-55220-5_32]Search in Google Scholar
[[31] T. Graepel, K. E. Lauter, and M. Naehrig. ML confidential: Machine learning on encrypted data. In Information Security and Cryptology - ICISC 2012 - 15th International Conference, Seoul, Korea, November 28-30, 2012, Revised Selected Papers, pages 1–21, 2012.10.1007/978-3-642-37682-5_1]Search in Google Scholar
[[32] H. Kilinc and A. Küpçü. Optimally efficient multi-party fair exchange and fair secure multi-party computation. 04 2015.10.1007/978-3-319-16715-2_18]Search in Google Scholar
[[33] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.]Search in Google Scholar
[[34] H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. LNCS, pages 630–660. Springer, 2017.10.1007/978-3-319-63688-7_21]Search in Google Scholar
[[35] L. Melis, G. Danezis, and E. D. Cristofaro. Efficient private statistics with succinct sketches. In 23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, 2016.10.14722/ndss.2016.23175]Search in Google Scholar
[[36] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine learning. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 19–38, 2017.10.1109/SP.2017.12]Search in Google Scholar
[[37] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux, and C. A. Gunter. Controlled functional encryption. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 14, pages 1280–1291. ACM Press, Nov. 2014.10.1145/2660267.2660291]Search in Google Scholar
[[38] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes, 55(2):165–172, Feb 1994.10.1007/BF02113297]Search in Google Scholar
[[39] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh. Privacy-preserving matrix factorization. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13, pages 801–812. ACM Press, Nov. 2013.10.1145/2508859.2516751]Search in Google Scholar
[[40] A. O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive, 2010:556, 2010.]Search in Google Scholar
[[41] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, May 1999.10.1007/3-540-48910-X_16]Search in Google Scholar
[[42] E. D. Sans, R. Gay, and D. Pointcheval. Reading in the dark: Classifying encrypted digits with functional encryption. Cryptology ePrint Archive, Report 2018/206, 2018. https://eprint.iacr.org/2018/206.]Search in Google Scholar
[[43] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 457–473. Springer, Mar. 2009.10.1007/978-3-642-00457-5_27]Search in Google Scholar
[[44] H. Spaeth. Mathematical algorithms for linear regression. Academic Press, page 304, 1991.]Search in Google Scholar
[[45] B. Waters. A punctured programming approach to adaptively secure functional encryption. In CRYPTO 2015, Part II, LNCS, pages 678–697. Springer, Aug. 2015.10.1007/978-3-662-48000-7_33]Search in Google Scholar