[[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy. In CCS, 2016.10.1145/2976749.2978318]Search in Google Scholar
[[2] Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al. Privacy-preserving deep learning: Revisited and Enhanced. In ATIS, 2017.]Search in Google Scholar
[[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv 1701.07875, 2017.]Search in Google Scholar
[[4] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and G. Felici. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers. International Journal of Security and Networks, 2015.10.1504/IJSN.2015.071829]Search in Google Scholar
[[5] M. Backes, P. Berrang, M. Humbert, and P. Manoharan. Membership Privacy in MicroRNA-based Studies. In CCS, 2016.10.1145/2976749.2978355]Search in Google Scholar
[[6] B. K. Beaulieu-Jones, Z. S. Wu, C. Williams, and C. S. Greene. Privacy-preserving generative deep neural networks support clinical data sharing. bioRxiv, 2017.10.1101/159756]Search in Google Scholar
[[7] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In NIPS, 2013.]Search in Google Scholar
[[8] D. Berthelot, T. Schumm, and L. Metz. BEGAN: Boundary Equilibrium Generative Adversarial Networks. arXiv 1703.10717, 2017.]Search in Google Scholar
[[9] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth. Practical secure aggregation for privacy preserving machine learning. In CCS, 2017.10.1145/3133956.3133982]Search in Google Scholar
[[10] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov. “You Might Also Like:” Privacy Risks of Collaborative Filtering. In IEEE Security and Privacy, 2011.10.1109/SP.2011.40]Search in Google Scholar
[[11] N. Carlini, C. Liu, J. Kos, Ú. Erlingsson, and D. Song. The Secret Sharer: Measuring Unintended Neural Network Memorization & Extracting Secrets. arXiv:1802.08232, 2018.]Search in Google Scholar
[[12] S. Chintala, E. Denton, M. Arjovsky, and M. Mathieu. How to Train a GAN? Tips and tricks to make GANs work. https://github.com/soumith/ganhacks, Year.]Search in Google Scholar
[[13] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun. Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks. In Machine Learning for Healthcare, 2017.]Search in Google Scholar
[[14] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In ICML, 2016.]Search in Google Scholar
[[15] W. Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical analysis: Linear regression and classification. In ICDM, 2004.10.1137/1.9781611972740.21]Search in Google Scholar
[[16] C. Dwork. Differential privacy: A survey of results. In Theory and Applications of Models of Computation, 2008.]Search in Google Scholar
[[17] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Generalization in adaptive data analysis and holdout reuse. In NIPS, 2015.]Search in Google Scholar
[[18] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In CCS, 2015.10.1145/2810103.2813677]Search in Google Scholar
[[19] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In USENIX Security, 2014.]Search in Google Scholar
[[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.]Search in Google Scholar
[[21] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of Wasserstein GANs. In ICLR (Posters), 2018.]Search in Google Scholar
[[22] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv 1503.02531, 2015.]Search in Google Scholar
[[23] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning. In CCS, 2017.10.1145/3133956.3134012]Search in Google Scholar
[[24] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet, 2008.10.1371/journal.pgen.1000167251619918769715]Search in Google Scholar
[[25] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical report, University of Massachusetts, Amherst, 2007. http://vis-www.cs.umass.edu/lfw/lfw.pdf.]Search in Google Scholar
[[26] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, 2015.]Search in Google Scholar
[[27] S. Ji, W. Li, N. Z. Gong, P. Mittal, and R. A. Beyah. On your social network de-anonymizablity: Quantification and large scale evaluation with seed knowledge. In NDSS, 2015.10.14722/ndss.2015.23096]Search in Google Scholar
[[28] J. Jia and N. Z. Gong. Attriguard: A practical defense against attribute inference attacks via adversarial machine learning. In USENIX Security, 2018.]Search in Google Scholar
[[29] Kaggle.com. Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabetic-retinopathy-detection#references, 2015.]Search in Google Scholar
[[30] A. Karpathy, P. Abbeel, G. Brockman, P. Chen, V. Cheung, R. Duan, I. Goodfellow, D. Kingma, J. Ho, R. Houthooft, T. Salimans, J. Schulman, I. Sutskever, and W. Zaremba. Generative Models. https://blog.openai.com/generative-models/, 2017.]Search in Google Scholar
[[31] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In ICLR, 2013.]Search in Google Scholar
[[32] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009. https://www.cs.toronto.edu/fflkriz/learning-features-2009-TR.pdf.]Search in Google Scholar
[[33] M. J. Kusner, J. R. Gardner, R. Garnett, and K. Q. Weinberger. Differentially Private Bayesian Optimization. In ICML, 2015.]Search in Google Scholar
[[34] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels using a learned similarity metric. In ICLM, 2016.]Search in Google Scholar
[[35] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. arXiv 1609.04802, 2016.]Search in Google Scholar
[[36] Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYPTO, 2000.10.1007/3-540-44598-6_3]Search in Google Scholar
[[37] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A. Gunter, and K. Chen. Understanding Membership Inferences on Well-Generalized Learning Models. arXiv:1802.04889, 2018.]Search in Google Scholar
[[38] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are GANs Created Equal? A Large-Scale Study. ArXiv 1711.10337, 2017.]Search in Google Scholar
[[39] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al. Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.]Search in Google Scholar
[[40] F. McSherry. Statistical inference considered harmful. https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md, 2016.]Search in Google Scholar
[[41] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Inference Attacks Against Collaborative Learning. arXiv:1805.04049, 2018.]Search in Google Scholar
[[42] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In IEEE Security and Privacy, 2009.10.1109/SP.2009.22]Search in Google Scholar
[[43] M. Nasr, R. Shokri, and A. Houmansadr. Machine Learning with Membership Privacy using Adversarial Regularization. In ACM CCS, 2018.10.1145/3243734.3243855]Search in Google Scholar
[[44] D. Nie, R. Trullo, C. Petitjean, S. Ruan, and D. Shen. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. In MICCAI, 2017.10.1007/978-3-319-66179-7_48604445930009283]Search in Google Scholar
[[45] otoro.net. Generating Large Images from Latent Vectors. http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/, 2016.]Search in Google Scholar
[[46] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar. Semi-supervised knowledge transfer for deep learning from private training data. In ICLR, 2017.]Search in Google Scholar
[[47] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to adversarial perturbations against deep neural networks. In IEEE Security and Privacy, 2016.10.1109/SP.2016.41]Search in Google Scholar
[[48] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson. Scalable Private Learning with PATE. In ICLR, 2018.]Search in Google Scholar
[[49] A. Pyrgelis, C. Troncoso, and E. De Cristofaro. What Does The Crowd Say About You? Evaluating Aggregation-based Location Privacy. In PETS, 2017.10.1515/popets-2017-0043]Search in Google Scholar
[[50] A. Pyrgelis, C. Troncoso, and E. De Cristofaro. Knock Knock, Who’s There? Membership Inference on Aggregate Location Data. In NDSS, 2018.10.14722/ndss.2018.23183]Search in Google Scholar
[[51] J. Qian, X.-Y. Li, C. Zhang, and L. Chen. De-anonymizing social networks and inferring private attributes using knowledge graphs. In INFOCOM, 2016.10.1109/INFOCOM.2016.7524578]Search in Google Scholar
[[52] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 1511.06434, 2015.]Search in Google Scholar
[[53] M. A. Rahman, T. Rahman, R. Laganiere, N. Mohammed, and Y. Wang. Membership Inference Attack against Differentially Private Deep Learning Model. Transactions on Data Privacy, 2018.]Search in Google Scholar
[[54] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-ford, X. Chen, and X. Chen. Improved Techniques for Training GANs. In NIPS, 2016.]Search in Google Scholar
[[55] T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In NIPS, 2016.]Search in Google Scholar
[[56] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In CCS, 2015.10.1145/2810103.2813687]Search in Google Scholar
[[57] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning models. In IEEE Security and Privacy, 2017.10.1109/SP.2017.41]Search in Google Scholar
[[58] C. Song, T. Ristenpart, and V. Shmatikov. Machine learning models that remember too much. In ACM CCS, 2017.10.1145/3133956.3134077]Search in Google Scholar
[[59] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning research, 2014.]Search in Google Scholar
[[60] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy image compression with compressive autoencoders. In ICLR, 2017.]Search in Google Scholar
[[61] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine learning models via prediction apis. In USENIX Security, 2016.]Search in Google Scholar
[[62] A. Triastcyn and B. Faltings. Generating differentially private datasets using gans. arXiv preprint arXiv:1803.03148, 2018.]Search in Google Scholar
[[63] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei. Towards Demystifying Membership Inference Attacks. arXiv:1807.09173, 2018.]Search in Google Scholar
[[64] J. Vincent. https://www.theverge.com/2016/7/5/12095830/google-deepmind-nhs-eye-disease-detection, 2016.]Search in Google Scholar
[[65] M. J. Wainwright, M. I. Jordan, and J. C. Duchi. Privacy aware learning. In Advances in Neural Information Processing Systems, 2012.]Search in Google Scholar
[[66] X. Wu, M. Fredrikson, W. Wu, S. Jha, and J. F. Naughton. Revisiting differentially private regression: Lessons from learning theory and their consequences. arXiv 1512.06388, 2015.]Search in Google Scholar
[[67] X. Wu and X. Zhang. Automated Inference on Criminality using Face Images. arXiv 1611.04135, 2016.]Search in Google Scholar
[[68] Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse. On the Quantitative Analysis of Decoder-Based Generative Models. In ICLR (Poster), 2017.]Search in Google Scholar
[[69] R. Yeh, C. Chen, T. Y. Lim, M. Hasegawa-Johnson, and M. N. Do. Semantic Image Inpainting with Perceptual and Contextual Losses. arXiv 1607.07539, 2016.]Search in Google Scholar
[[70] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning: Analyzing the connection to overfitting. In IEEE CSF, 2018.10.1109/CSF.2018.00027]Search in Google Scholar