Open Access

Detection of Floating Objects Based on Hydroacoustic and Hydrodynamic Pressure Measurements in the Coastal Zone


Cite

1. Kuşku H., Yiğit M., Ergün S., YiğitÜ., Taylor N. (2018): Acoustic Noise Pollution from Marine Industrial Activities: Exposure and Impacts. Aquatic Research, 1(4), 148–161, DOI: 10.3153/AR18017.10.3153/AR18017Search in Google Scholar

2. Tournadre J. (2014): Anthropogenic pressure on the open ocean: The growth of vessel traffic revealed by altimeter data analysis. Geophysical Research Letters,41(22),7924–7932, DOI: https://doi.org/10.1002/2014GL061786.10.1002/2014GL061786Search in Google Scholar

3. SOLAS (2000): Safety of Life at Sea, Chapter V, Regulation 19, 470–473.Search in Google Scholar

4. Mazzarella F., Vespe M.,Alessandrini A., Tarchi D., Aulicino G., Vollero A.(2017): A novel anomaly detection approach to identify intentional AIS on-off switching. Expert Systems with Applications, 78, 110–123, DOI: 10.1016/j. eswa.2017.02.011.Search in Google Scholar

5. Riveiro M., Falkman G., Ziemke T.(2008): Improving maritime anomaly detection and situation awareness through interactive visualization. 11th International Conference on Information Fusion, Cologne, 1–8, IEEE Xplore.Search in Google Scholar

6. Häkkien J. M., Posti A. I. (2013): Overview of Maritime Accidents Involving Chemicals Worldwide in the Baltic Sea. In: Marine Transport & Shipping – Marine Navigation and Safety of Sea Transportation, Weintrit A. & Neumann T. (Eds.),15–25, CRC Press, DOI: 10.12716/1001.08.02.16.10.12716/1001.08.02.16Search in Google Scholar

7. Hassanzadeh M. A. (2013): Port Safety; Requirements & Economic Outcomes. In: Marine Transport & Shipping – Marine Navigation and Safety of Sea Transportation, Weintrit A. & Neumann T. (Eds.), 117–121, CRC Press.10.1201/b14960-20Search in Google Scholar

8. Marcjan K., Gucma L. (2015): A concept of a vessel domain for the use of navigational safety assessment. Journal of KONBiN, 33(1), 19–28,DOI: https://doi.org/10.1515/jok-2015-0002.10.1515/jok-2015-0002Search in Google Scholar

9. Parnell K. E., Kofoed-Hansen H. (2001): Wakes from largehigh-speed ferries in confined coastal waters: Management approaches with examples from New Zealand and Denmark. Coastal Management, 29(3), 217–237, DOI: 10.1080/08920750152102044.10.1080/08920750152102044Search in Google Scholar

10. Baztan J., Chouinard O., Jorgensen B., Tett P., Vanderlinden J. P., Vasseur L. (2015): Coastal Zones, Solutions for the 21st Century. Elsevier.Search in Google Scholar

11. Haelters J., Norro A., Jacques Th. (2009): Underwater noise emission during the Phase I construction of the C-Power wind farm and baseline for the Belwind wind farm. In: Offshore wind farms in the Belgian part of the North Sea: State of the art after two years of environmental monitoring, Royal Belgian Institute for Natural Sciences, Management Unit of the North Sea Mathematical Models, Degraer, S.; Brabant, R. (Eds.), pp. 17–37.Search in Google Scholar

12. Kozaczka E., Grelowska G. (2018): Propagation of vessel-generated noise in a shallow sea. Polish Maritime Research, 25(2), 37–46, DOI: 10.2478/pomr-2018-0052.10.2478/pomr-2018-0052Search in Google Scholar

13. Kozaczka E., Grelowska G. (2017): Theoretical model of acoustic wave propagation in shallow water. Polish Maritime Research, 24(2), 48–55, DOI: 10.1515/pomr-2017-0049.10.1515/pomr-2017-0049Search in Google Scholar

14. Faltinsen O. M. (2005): Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.10.1017/CBO9780511546068Search in Google Scholar

15. Islam H., GuedesSoares C. (2018): Estimation of hydrodynamic derivatives of a container vessel using PMM simulation in OpenFOAM. Ocean Engineering,164, 414–425, DOI: https://doi.org/10.1016/j.oceaneng.2018.06.063.10.1016/j.oceaneng.2018.06.063Search in Google Scholar

16. Altomare C., Crespo A. J. C., Dominguez J. M., Gómez-Gesteira M., Suzuki T.,Verwaest T.(2015): Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96, 1–12, DOI: https://doi.org/10.1016/j.coastaleng.2014.11.001.10.1016/j.coastaleng.2014.11.001Search in Google Scholar

17. Higuera P., Lara J. L., Losada I. J. (2013): Simulating coastal engineering processes with OpenFOAM. Coastal Engineering, 71, 119–134, DOI: 10.1016/j.coastaleng.2012.06.002.10.1016/j.coastaleng.2012.06.002Search in Google Scholar

18. Carlton J. S., Vlasić D. (2005): Ship vibration and noise: Some topical aspects. Lloyd’s Technical Papers, 1st International Ship Noise and Vibration Conference: London, June 20–21, 2005, Lloyd’s Register Technical Papers.Search in Google Scholar

19. Gloza I., Malinowski S. J. (2002): Identification of the vessels underwater noise sources in the coastal region. Hydroacoustics, 5, 9–16.Search in Google Scholar

20. Gloza I., Buszman K. (2014): Sound intensity distribution as an underwater acoustic investigation process. Hydroacoustics, 17, 57–62.Search in Google Scholar

21. Park I. R. (2015): Numerical analysis of flow around the hull and the propeller of a vessel advancing in shallow water. Journal of Computational Fluids Engineering, 20(4), 93–101, DOI: 10.6112/kscfe.2015.20.4.093.10.6112/kscfe.2015.20.4.093Search in Google Scholar

22. Koronowicz T., Krzemianowski Z. (2007): Investigations of the influence of screw propeller operation on water flow around stern part of vessel hull. Polish Maritime Research,14(1), 3–8, DOI: 10.2478/v10012-007-0001-5.10.2478/v10012-007-0001-5Search in Google Scholar

23. Bertram V. (2012): Practical vessel hydrodynamics, 2nd Edition, Elsevier.Search in Google Scholar

24. Gloza I., Buszman K. (2011): The multi-influence passive module for underwater environment monitoring. Hydroacoustics, 14, 47–54.Search in Google Scholar

25. Buszman K. (2013): Examination of acoustic wave propagation in real conditions. Hydroacoustics, 16, 11–18.Search in Google Scholar

26. Figurski M., Nykiel G. (2018): Satellite geodesy – Polish COSPAR Report 2018. Space Research in Poland Report to Committee on Space Research, 3–91.Search in Google Scholar

27. Makar A. (2018): Dynamic tests of ASG-EUPOS receiver in the hydrographic application, 18th International Multidisciplinary Scientific GeoConferenceSGEM 2018, Albena, Bulgaria, 2018, DOI: 10.5593/sgem2018/2.2/S09.094.10.5593/sgem2018/2.2/S09.094Search in Google Scholar

28. Vujović I., Kuzmanić I. (2018): Investigation of weather conditions’ influence to the maritime zone surveillance – Ground truth generation. 21st International Research/Expert Conference on Trends in the Development of Machinery and Associated Technology TMT,Karlovy Vary, Czech Republic, 2018.Search in Google Scholar

29. Massel S. R. (1989): Hydrodynamics of Coastal Zones, 48, Elsevier, DOI: https://doi.org/10.1017/S0022112090222149.10.1017/S0022112090222149Search in Google Scholar

30. Tan W.Y. (1992): Mathematical theory and numerical solution for a two-dimensional system of shallow-water equations. Shallow Water Hydrodynamics, 55, Elsevier.Search in Google Scholar

31. Ferretti G., Barani S., Scafidi D., Capello M., Besio G. (2018): Near real-time monitoring of significant sea wave height through microseism recordings: An application in the Ligurian Sea (Italy). Ocean & Coastal Management, 165, 185–194,DOI: 10.1016/j.ocecoaman.2018.08.023.10.1016/j.ocecoaman.2018.08.023Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences