Open Access

Parameters Identification of the Flexible Fin Kinematics Model Using Vision and Genetic Algorithms


Cite

1. Chen Z., Shatara S., Tan X. (2010): Modelling of biomimetic fish propeller by an ionic polymer-metal caudal fin. IEEE/ASME Transactions on Mechatronics, Vol. 15(3), 448-459.10.1109/TMECH.2009.2027812Search in Google Scholar

2. Graaf V. (2018): Final report Biomimetic Propulsion.Search in Google Scholar

3. Goldberg D. E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing, Boston.Search in Google Scholar

4. Hożyń S., Żak B. (2015): Moving object detection, localization and tracking using stereo vison system. Solid State Phenomena, Vol. 236, 134-144.10.4028/www.scientific.net/SSP.236.134Search in Google Scholar

5. Hożyń S., Żak B. (2017): Local image features matching for real-time seabed tracking applications. Journal of Marine Engineering and Technology, Vol. 16, 273-282.10.1080/20464177.2017.1386266Search in Google Scholar

6. Koca G. O., Bal C., Korkmaz D. (2018): Three-dimensional modeling of a robotic fish based on real carplLocomotion. Applied Sciences, Vol. 8, 180.10.3390/app8020180Search in Google Scholar

7. Korkmaz D., Budak U., Bal C. (2012): Modeling and implementation of a biomimetic robotic fish. IEEE Conference, doi: 10.1109/SPEEDAM.2012.626451010.1109/SPEEDAM.2012.6264510Search in Google Scholar

8. Krishnadas A., Ravichandran S., Rajagopal P. (2018): Analysis of biomimetic cadual fin shapes for optimal propulsive efficiency. Ocean Engineering, Vol. 153, 132-142.10.1016/j.oceaneng.2018.01.082Search in Google Scholar

9. Lighthill M. J. (1960): Note on the swimming of slender fish. Journal of Fluid Mechanics, Vol. 9, 305-317.10.1017/S0022112060001110Search in Google Scholar

10. Liu J., Hu. H. (2010): Biological inspiration: From carangiform fish to multi-joint robotic fish. Journal of Bionic Engineering, Vol. 7, 35-48.10.1016/S1672-6529(09)60184-0Search in Google Scholar

11. Lou B., Ni Y. Mao M., Wang P., Cong Y. (2017): Optimization of the kinematic model for niomimetic robotic dish with rigid headshaking sitigation. Robotics, Vol. 6, 30, doi:10.3390/robotics6040030.10.3390/robotics6040030Search in Google Scholar

12. Malec M., Morawski M., Szymak P., Trzmiel A. (2013): Analysis of parameters of traveling wave impact on the speed of biomimetic underwater vehicle. Solid State Phenomena, Vol. 210, 273-279.10.4028/www.scientific.net/SSP.210.273Search in Google Scholar

13. Mathworks (2018): MATLAB documentation, https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html.Search in Google Scholar

14. Morawski M., Słota A., Zając J., Malec M., Krupa K. (2017): Hardware and low-level control of biomimetic underwater vehicle designed to perform ISR tasks. Journal of Marine Engineering & Technology, Vol. 16, 227-237.10.1080/20464177.2017.1387089Search in Google Scholar

15. Piskur P., Szymak P. (2017): Algorithms for passive detection of moving vessels in marine environment. Journal of Marine Engineering & Technology, Vol. 16, 377-385.10.1080/20464177.2017.1398483Search in Google Scholar

16. Shadwick R., Lauder G. (2006): Fish Physiology: Fish Biomechanics, Vol. 23. Academic Press.Search in Google Scholar

17. Szymak P., Praczyk T., Naus K., Szturomski B. (2016): Research on biomimetic underwater vehicles for underwater ISR. Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VII, 2016, doi: 10.1117/12.2225587.10.1117/12.2225587Search in Google Scholar

18. Szymak P., Przybylski M. (2018): Thrust measurement of biomimetic underwater vehicle with undulating propulsion. Scientific Journal of Polish Naval Academy, Vol. 213(2), 69-82.10.2478/sjpna-2018-0014Search in Google Scholar

19. Taylor G. K., Nudds R. L., Thomas A. L. (2003):. Flying and swimming animals cruise at a Strouhal number tuned for high power efciency. Nature, Vol. 425, 707-710.10.1038/nature0200014562101Search in Google Scholar

20. Tey W., Sidik N. (2015): Comparison of swimming performance between two-dimensional carangiform and anguilliform locomotor. Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 11(1), 1-10.Search in Google Scholar

21. Tytell E., Hsu C., Fausi L. (2014): The role of mechanical resonance in the neural control of swimming in fishes. Zoology (Jena), Vol. 117(1), 48-56.10.1016/j.zool.2013.10.011452021324433627Search in Google Scholar

22. Tytell E., Lu. M. (2016): Role of body stiffness in undulatory swimming: Insights from robotic and computational models. Physical Review Fluids, Vol. 1.10.1103/PhysRevFluids.1.073202Search in Google Scholar

23. Wang J., Tan X. (2015): Averaging of tail-actuated robotic fish dynamics through force and moment scaling. IEEE Transactions on Robotics, Vol. 31(4), 906-917.10.1109/TRO.2015.2433539Search in Google Scholar

24. Weise T. (2009): Global Optimization Algorithms - Theory and Application, Retrieved: http://www.it-weise.de/Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences