Open Access

Motion Characteristics After Ricochet: An Experimental Investigation


Cite

1. Yang J., Li Y., Feng J., et al. (2017): Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed. PLOS ONE, 12(5), e0178461-.10.1371/journal.pone.0178461544878428558012Search in Google Scholar

2. Ma Z., Feng J., Yang J. (2018): Research on vertical air–water trans-media control of hybrid unmanned aerial underwater vehicles based on adaptive sliding mode dynamical surface control. International Journal of Advanced Robotic Systems, 15(2), 172988141877053-.10.1177/1729881418770531Search in Google Scholar

3. Feng J., Li Y., Xu B., et al. (2016): Minimum thrust of a morphing unmanned submersible aerial vehicle in the water-to-air motion. Transactions of FAMENA, 40(4), 69-82.Search in Google Scholar

4. Xu B., Li Y., Feng J., et al. (2016): Research on the water-entry attitude of a submersible aircraft. SpringerPlus, 5(1), 1933-1937.Search in Google Scholar

5. Johnson W. (1998): Ricochet of non-spinning projectiles, mainly from water. Part I: Some historical contributions. International Journal of Impact Engineering, 21(1-2), 15-24.Search in Google Scholar

6. Johnson W. (1998): The ricochet of spinning and non-spinning spherical projectiles, mainly from water. Part II: an outline of theory and warlike applications. International Journal of Impact Engineering, 21(1-2), 25-34.Search in Google Scholar

7. Nishida M., Okumura M., Tanaka K. (2010): Effects of density ratio and diameter ratio on critical incident angles of projectiles impacting granular media. Granular Matter, 12(4), 337-344.10.1007/s10035-010-0186-7Search in Google Scholar

8. Xu J., Lee C. K., Fan S. C., et al. (2014): A study on the ricochet of concrete debris on sand. International Journal of Impact Engineering, 65, 56-68.10.1016/j.ijimpeng.2013.11.003Search in Google Scholar

9. Vijayalakshmi M., Naik S. D. (2015): Skipping stone to projectile ricochet. International Review on Modelling and Simulations, 8(1), 104-110.Search in Google Scholar

10. Wim K., Ivo A., Erwin J. M. (2015): An empirical study on the relation between the critical angle for bullet ricochet and the properties of wood. Journal of Forensic Sciences, 60(3), 605-610.Search in Google Scholar

11. Xue J., Shen P., Wang W. (2016): Research on ricochet and its regularity of projectiles obliquely penetrating into concrete target. Chinese Journal of Explosives & Propellants, 18(5), 2754-2770.10.21595/jve.2016.16784Search in Google Scholar

12. Jian D., Kehui W., Gang Z., et al. (2016): Critical ricochet performance of penetrator impacting concrete targets. Explosion and Shock Waves, 36(6), 797-802.Search in Google Scholar

13. Jian D., Kehui W., Gang Z., et al. (2016): Evaluation method for critical ricochet of projectile obliquely penetrating hard target. Acta Armamentarii, 37(8), 1395-1400.Search in Google Scholar

14. Li Y., Feng J., Hu J., et al. (2016): Research on entry water ricochet progress of a vehicle at small angle. Acta Armamentarii, 37(10), 1860-1871.Search in Google Scholar

15. Chen G. M., Feng J. F., Hu J. H., et al. (2017): The influence of initial conditions of water-entry on ricochet phenomenon. Fluid Dynamics Research, 49(4), 045505.Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences