Open Access

Effects of Weight-Bearing and Weight-Supporting Sports on Bone Mass in Males


Cite

1. Dardzińska J., Chabaj-Kędroń H., Małgorzewicz S. (2016). Osteoporosis as a social disease – prevention methods. Hygeia Public Health 51(1), 23-30. Search in Google Scholar

2. Cawthon P.M., Shahnazari M., Orwoll E.S., Lane N.E. (2016). Osteoporosis in men: findings from the osteoporotic fractures in men study (MrOS). Therapeutic Advances in Musculo-skeletal Disease 8(1), 15-27. DOI: 10.1177/1759720X15621227470741626834847 Open DOISearch in Google Scholar

3. Beck B.R., Daly R.M., Singh M.A., Taaffe D.R. (2017). Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. Journal of Science and Medicine in Sport 20(5), 438-445. DOI: 10.1016/j.jsams.2016.10.00127840033 Open DOISearch in Google Scholar

4. Silver T., Ellerbroek A., Knofo S., Peacock C.A., Tartar J., Antonio J. (2009). High and low impact physical activity positively influences female bone density. Journal of Exercise and Nutrition 1(5), 1-4. Search in Google Scholar

5. Šolaja A., Šolaja M. (2017). Differences in the parameters of calcaneal bone mineral density beetwen elite track and field athletes, elite handball players and sedentary male controls. Facta Uniwersitats Series: Physical Education and Sport 15(2), 261-270. Search in Google Scholar

6. Campion F., Nevill A.M., Karlsson M.K., Lounana J., Shabani M. et al. (2010). Bone status in professional cyclists. International Journal of Sports Medicine 31(7), 511-515. DOI: 10.1055/s-0029-124361620432201 Open DOISearch in Google Scholar

7. Antonio J., Leaf A., Carson C., Ellerbroek A., Silver T. et al. (2018). Bone mineral density in competitive athletes. Journal of Exercise and Nutrition 1(2), 1-11. Search in Google Scholar

8. Hinrichs T., Chae E., Lehmann R., Allolio B., Platen P. (2010). Bone mineral density in athletes of different disciplines: a cross-sectional study. The Open Sports Sciences Journal 3, 129-133.10.2174/1875399X01003010129 Search in Google Scholar

9. Goolsby M.A., Boniquit N. (2017). Bone health in athletes. Sports Health 9(2), 108-117. DOI: 10.1177/1941738116677732534939027821574 Open DOISearch in Google Scholar

10. Rathore B., Singh M., Kumar V., Misra A. (2016). Osteocalcin: an emerging biomarker for bone turnover. International Journal of Research in Medical Sciences 4(9), 3670-3674. DOI: 10.18203/2320-6012.ijrms20162899. Open DOISearch in Google Scholar

11. Szponar L., Wolnicka K., Rychlik E. (2000). Album of photographs of food products and dishes. Warsaw: Food and Nutrition Institute. Search in Google Scholar

12. Kunachowicz H., Nadolna I., Przygoda B., Iwanow K. (2017). Tables of food composition and nutritional value. Warsaw: PZWL. Search in Google Scholar

13. Jarosz M. (2017). Nutrition standards for the Polish population. Warsaw: Food and Nutrition Institute. Search in Google Scholar

14. Almeida M. (2012). Aging mechanisms in bone. BoneKEy Reports 1, 102. DOI: 10.1038/bonekey.2012.102365982223705067 Open DOISearch in Google Scholar

15. Grabowski P. (2015). Physiology of bone. Endocrine Development 28, 33-55. DOI: 10.1159/00038099126138834 Open DOISearch in Google Scholar

16. McVeigh J.A., Howie E.K., Zhu K., Walsh J.P., Straker L. (2019). Organized sport participation from childhood to adolescence is associated with bone mass in young adults from the raine study. Journal of Bone and Mineral Research 34(1), 67-74. DOI: 10.1002/jbmr.358330328145 Open DOISearch in Google Scholar

17. Morseth B., Emaus N., Jørgensen L. (2011). Physical activity and bone: The importance of the various mechanical stimuli for bone mineral density. A review. Norsk Epidemiologi 20(2), 173-178. DOI: 10.5324/nje.v20i2.1338 Open DOISearch in Google Scholar

18. Weaver C.M., Gordon C.M., Janz K.F., Kalkwarf H.J., Lappe J.M. et al. (2016). The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporosis International 27(4), 1281-1386. DOI: 10.1007/s00198-015-3440-3479147326856587 Open DOISearch in Google Scholar

19. Petersen B.A., Hastings B., Gottschall J.S. (2017). Low load, high repetition resistance training program increases bone mineral density in untrained adults. The Journal of Sports Medicine and Physical Fitness 57(1-2), 70-76. DOI: 10.23736/S0022-4707.16.05697-826364686 Open DOISearch in Google Scholar

20. Verroken C., Zmierczak H.G., Goemaere S., Kaufman J.M., Lapauw B. (2018). Bone turnover in young adult men: Cross-sectional determinants and associations with prospectively assessed bone loss. Journal of Bone and Mineral Research 33(2), 261-268. DOI: 10.1002/jbmr.330328987002 Open DOISearch in Google Scholar

21. Nilsson B.E., Wesflin N.E. (1971). Bone density in athletes. Clinical Orthopaedics and Related Research 77, 179-182. Search in Google Scholar

22. Fredericson M., Chew K., Ngo J., Cleek T., Kiratli J., Cobb K. (2007). Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. British Journal of Sports Medicine 41(10), 664-668. DOI: 10.1136/bjsm.2006.030783246516317473003 Open DOISearch in Google Scholar

23. Randers M.B., Nielsen J.J., Krustrup B.R., Sundstrup E., Jakobsen M.D., Nybo L. (2010). Positive performance and health effects of a football training program over 12 weeks can be maintained over a 1-year period with reduced training frequency. Scandinavian Journal of Medicine & Science in Sports 20(1), 80-89. DOI: 10.1111/j.1600-0838.2010.01091.x20210904 Open DOISearch in Google Scholar

24. Nilsson M., Ohlsson C., Oden A., Mellstrom D., Lorentzon M. (2012). Increased physical activity is associated with enhanced development of peak bone mass in men: a five-year longitudinal study. Journal of Bone and Mineral Research 27(5), 1206-1214. DOI: 10.1002/jbmr.1549341562222247082 Open DOISearch in Google Scholar

25. Hagman M., Wolff H.E., Hornstrup T., Fristrup B., Nielsen J.J. et al. (2018). Bone mineral density in lifelong trained male football players compared with young and elderly untrained men. Journal of Sport and Heath Science 7(2), 159-168. DOI: 10.1016/j.jshs.2017.09.009618054230356456 Open DOISearch in Google Scholar

26. Lee J.H. (2019). The effect of long-distance running on bone strength and bone biochemical markers. Journal of Exercise Rehabilitation 15(1), 26-30. DOI: 10.12965/jer.1836564.282641649230899732 Open DOISearch in Google Scholar

27. Freda D., Skoe T., Cave C., Wehrli M., Fox B. et al. (2017). Effects of weight bearing and non-weight bearing sports on bone quality in male collegiate athletes. Journal of Science and Cycling 6(3), 21-22. Search in Google Scholar

28. Medelli J., Lounana J., Menuet J.J., Shabani M., Cordero-MacIntyre Z. (2009). Is osteopenia a health risk in professional cyclists? Journal of Clinical Densitometry 12(1), 28-34. DOI: 10.1016/j.jocd.2008.07.05718835799 Open DOISearch in Google Scholar

29. Smathers A.M., Bemben M.G., Bemben D.A. (2009). Bone density comparisons in male competitive road cyclists and untrained controls. Medicine & Science in Sports & Exercise 41(2), 290-296. DOI: 10.1249/MSS.0b013e318185493e19127198 Open DOISearch in Google Scholar

30. Oja P., Titze S., Bauman A., De Geus B., Krenn P. et al. (2011). Health benefits of cycling: a systematic review. Scandinavian Journal of Medicine & Science in Sports 21(4), 496-509. DOI: 10.1111/j.1600-0838.2011.01299.x21496106 Open DOISearch in Google Scholar

31. Guillaume G., Chappard D., Audran M. (2012). Evaluation of the bone status in high-level cyclists. Journal of Clinical Densitometry 15(1), 103-107. DOI: 10.1016/j.jocd.2011.08.00122071023 Open DOISearch in Google Scholar

32. Długołecka B., Jówko E., Czeczelewski J., Cieśliński I., Klusiewicz A. (2019). Bone mineral status of young men with different levels of physical activity. Polish Journal of Sport and Tourism 26(1), 8-13. DOI: 10.2478/pjst-2019-0002 Open DOISearch in Google Scholar

33. Rapún-López M., Olmedillas H., Gonzalez-Agüero A., Gomez-Cabello A., Pradas de la Fuente F. et al. (2019). May young elite cyclists have less efficient bone metabolism? Nutrients 11(5), 1178. DOI: 10.3390/nu11051178656768231130694 Open DOISearch in Google Scholar

34. Olmedillas H., González-Agüero A., Moreno L., Casajus J., Rodríguez G.V. (2012). Cycling and bone health: a systematic review. BMC Medicine 10, 168. DOI: 10.1186/1741-7015-10-168355460223256921 Open DOISearch in Google Scholar

35. Ondrak K.S., Morgan D.W. (2007). Physical activity, calcium intake and bone health in children and adolescents. Sports Medicine 37(7), 587-601. DOI: 10.2165/00007256-200737070-0000317595154 Open DOISearch in Google Scholar

36. Liberato S.C., Bressan J., Hills A.P. (2013). The role of physical activity and diet on bone mineral indices in young men: a cross-sectional study. Journal of the International Society of Sports Nutrition 10, 43. DOI: 10.1186/1550-2783-10-43384950424066848 Open DOISearch in Google Scholar

37. Alghadir A.H., Gabr S.A., Al-Eisa E. (2015). Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis. The Journal of Physical Therapy Science 27(7), 2261-227. DOI: 10.1589/jpts.27.2261454086026311965 Open DOISearch in Google Scholar

38. Vorland C.J., Stremke E.R., Moorthi R.N., Hill Gallant K.M. (2017). Effects of excessive dietary phosphorus intake on bone health. Current Osteoporosis Reports 15(5), 473-482. DOI: 10.1007/s11914-017-0398-4569371428840444 Open DOISearch in Google Scholar

39. Olmedillas H., Gonzalez-Agüero A., Rapún-López M., Gracia-Marco L., Gomez-Cabello A. et al. (2018). Bone metabolism markers and vitamin D in adolescent cyclists. Archives of Osteoporosis 13, 11. DOI: 10.1007/s11657-018-0415-y29397487 Open DOISearch in Google Scholar

40. Hackney A.C., Hooper D.R. (2019). Reductions in testosterone are not indicative of exercise performance decrement in male endurance athletes. Aging Male 23(1), 1-2. DOI: 10.1080/13685538.2019.157473630836797 Open DOISearch in Google Scholar

41. Hiam D., Voisin S., Yan X., Landen S., Jacques M. et al. (2019). The association between bone mineral density gene variants and osteocalcin at baseline, and in response to exercise: The Gene SMART study. Bone. 123, 23-27. DOI: DOI: 10.1016/j.bone.2019.03.01530878522 Open DOISearch in Google Scholar

eISSN:
2082-8799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Public Health, Sports and Recreation, other