Open Access

Monte Carlo Calculation of linear attenuation coefficients and photon scattering properties of novel concretes loaded with Osmium, Iridium and Barite nanoparticles


Cite

1. Tekin H, Sayyed M, Issa SA. Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiation Physics and Chemistry. 2018;150:95-100. https://doi.org/10.1016/j.radphyschem.2018.05.00210.1016/j.radphyschem.2018.05.002 Search in Google Scholar

2. Janković K, Stanković S, Bojović D, Stojanović M, Antić L. The influence of nano-silica and barite aggregate on properties of ultra high performance concrete. Construction and Building Materials. 2016;126:147-156. https://doi.org/10.1016/j.conbuildmat.2016.09.02610.1016/j.conbuildmat.2016.09.026 Search in Google Scholar

3. Mesbahi A, Mansouri E, Jangjoo AG, Tekin HO. Radiation protection characteristics of nano-concretes against photon and neutron beams. Smart Nanoconcretes and Cement-Based Materials: Elsevier; 2020:447-460. https://doi.org/10.1016/B978-0-12-817854-6.00019-210.1016/B978-0-12-817854-6.00019-2 Search in Google Scholar

4. Malekzadeh R, Mehnati P, Sooteh MY, Mesbahi A. Influence of the size of nano-and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology. Radiological Physics and Technology. 2019;12(3):325-334. https://doi.org/10.1007/s12194-019-00529-310.1007/s12194-019-00529-331385155 Search in Google Scholar

5. Zabihzadeh M, Ay MR, Allahverdi M, Mesbahi A, Mahdavi SR, Shahriari M. Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model. Radiation Protection Dosimetry. 2009;135(1):21-32. https://doi.org/10.1093/rpd/ncp09710.1093/rpd/ncp09719483207 Search in Google Scholar

6. Juste B, Morató S, García C, Miró R, Verdú G. Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2020;954:161248. https://doi.org/10.1016/j.nima.2018.09.08310.1016/j.nima.2018.09.083 Search in Google Scholar

7. Khaldari R, Mesbahi A, Kara U. Monte Carlo calculation of shielding properties of newly developed heavy concretes for megavoltage photon beam spectra used in radiation therapy. Iranian Journal of Medical Physics. 2016;13(4):250-260. https://dx.doi.org/10.22038/ijmp.2017.19206.1175 Search in Google Scholar

8. Ahmad I, Shahzada K, Ahmad MI, et al. Densification of Concrete using Barite as Fine Aggregate and its Effect on Concrete Mechanical and Radiation Shielding Properties. Journal of Engineering Research. 2019;7(4):81-95. Search in Google Scholar

9. Mortazavi S, Mosleh-Shirazi M, Roshan-Shomal P, Raadpey N, Baradaran-Ghahfarokhi M. High-performance heavy concrete as a multi-purpose shield. Radiation Protection Dosimetry. 2010;142(2-4):120-124. https://doi.org/10.1093/rpd/ncq26510.1093/rpd/ncq26521036811 Search in Google Scholar

10. Tekin H, Sayyed M, Altunsoy E, Manici T. Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code. Dig. J. Nanomater. Biostruct. 2017;12(3):861-867. Search in Google Scholar

11. Agar O, Tekin HO, Sayyed M, Korkmaz ME, Culfa O, Ertugay C. Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Results in Physics. 2019;12:237-243. https://doi.org/10.1016/j.rinp.2018.11.05310.1016/j.rinp.2018.11.053 Search in Google Scholar

12. Rajavikraman R. Novel method for radiation shielding using nano-concrete composite. Int J Mater Sci Eng. 2013;1:20-23. https://doi.org/10.12720/ijmse.1.1.20-2310.12720/ijmse.1.1.20-23 Search in Google Scholar

13. Krishna BG, Prasad P, Sahu V, Sahu JP, Agarwal A. Beta Backscattering and Gamma Radiation Absorption Characteristics of Carbon Nanoparticles Contained Concrete Composite. Paper presented at: Nano Hybrids and Composites 2017. https://doi.org/10.4028/www.scientific.net/NHC.17.3110.4028/www.scientific.net/NHC.17.31 Search in Google Scholar

14. Tekin HO, Singh VP, Manici T. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes. 2017;121:122-125. https://doi.org/10.1016/j.apradiso.2016.12.04010.1016/j.apradiso.2016.12.040 Search in Google Scholar

15. Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding. Radiation Physics and Chemistry. 2018;147:85-90. https://doi.org/10.1016/j.radphyschem.2018.02.01710.1016/j.radphyschem.2018.02.017 Search in Google Scholar

16. Facure A, Silva A, Rivera J, Falcao R. Neutron scattering in concrete and wood: Part II-oblique incidence. Radiation Protection Dosimetry. 2008;128(3):367-374. https://doi.org/10.1093/rpd/ncm37810.1093/rpd/ncm378 Search in Google Scholar

17. Abdo AE-S. Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Annals of Nuclear Energy. 2002;29(16):1977-1988. https://doi.org/10.1016/S0306-4549(02)00019-110.1016/S0306-4549(02)00019-1 Search in Google Scholar

18. Mesbahi A, Azarpeyvand A-A, Shirazi A. Photoneutron production and backscattering in high density concretes used for radiation therapy shielding. Annals of Nuclear Energy. 2011;38(12):2752-2756. https://doi.org/10.1016/j.anucene.2011.08.02310.1016/j.anucene.2011.08.023 Search in Google Scholar

19. Mesbahi A, Azarpeyvand A-A, Khosravi HR. Does concrete composition affect photoneutron production inside radiation therapy bunkers? Japanese Journal of Radiology. 2012;30(2):162-166. https://doi.org/10.1007/s11604-011-0030-y10.1007/s11604-011-0030-y22180187 Search in Google Scholar

20. Choi CH, Park S-Y, Park JM, Chun M, Kim J-i. Monte Carlo simulation of neutron dose equivalent by photoneutron production inside the primary barriers of a radiotherapy vault. Physica Medica. 2018;48:1-5. https://doi.org/10.1016/j.ejmp.2018.03.00910.1016/j.ejmp.2018.03.00929728220 Search in Google Scholar

21. Mesbahi A, Alizadeh G, Seyed-Oskoee G, Azarpeyvand A-A. A new barite-colemanite concrete with lower neutron production in radiation therapy bunkers. Annals of Nuclear Energy. 2013;51:107-111. https://doi.org/10.1016/j.anucene.2012.07.03910.1016/j.anucene.2012.07.039 Search in Google Scholar

22. Mesbahi A, Khaldari R. Neutron and photon scattering properties of high density concretes used in radiation therapy facilities: A Monte Carlo study. Polish Journal of Medical Physics and Engineering. 2017;23(3):61. https://doi.org/10.1515/pjmpe-2017-001110.1515/pjmpe-2017-0011 Search in Google Scholar

23. Pelowitz DB. MCNPX USER’S MANUAL Version 2.7. 0-LA-CP-11-00438. Los Alamos National Laboratory. 2011. Search in Google Scholar

24. Sheikh-Bagheri D, Rogers D. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Medical Physics. 2002;29(3):391-402. https://doi.org/10.1118/1.144541310.1118/1.144541311930914 Search in Google Scholar

25. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Shielding characteristics of nanocomposites for protection against X-and gamma rays in medical applications: effect of particle size, photon energy and nanoparticle concentration. Radiation and Environmental Biophysics. 2020:1-18. https://doi.org/10.1007/s00411-020-00865-810.1007/s00411-020-00865-832780196 Search in Google Scholar

26. Waly E-SA, Bourham MA. Comparative study of different concrete composition as gamma-ray shielding materials. Annals of Nuclear Energy. 2015;85:306-310. https://doi.org/10.1016/j.anucene.2015.05.01110.1016/j.anucene.2015.05.011 Search in Google Scholar

27. Ghasemi-Jangjoo A, Ghiasi H. MC safe bunker designing for an 18 MV linac with nanoparticles included primary barriers and effect of the nanoparticles on the shielding aspects. Reports of Practical Oncology & Radiotherapy. 2019;24(4):363-368. https://doi.org/10.1016/j.rpor.2019.05.00910.1016/j.rpor.2019.05.009655448731194189 Search in Google Scholar

28. Un A, Demir F. Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavyweight and normal-weight concretes. Applied Radiation and Isotopes. 2013;80:73-77. https://doi.org/10.1016/j.apradiso.2013.06.01510.1016/j.apradiso.2013.06.01523838359 Search in Google Scholar

29. Norhasri MM, Hamidah M, Fadzil AM. Applications of using nano material in concrete: A review. Construction and Building Materials. 2017;133:91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.00510.1016/j.conbuildmat.2016.12.005 Search in Google Scholar

30. Swanson WP. Radiological safety aspects of the operation of electron linear accelerators. 1979. Search in Google Scholar

31. Raso DJ. Monte Carlo calculations on the reflection and transmission of scattered gamma rays. Nuclear Science and Engineering. 1963;17(3):411-418. https://doi.org/10.13182/NSE63-A1739010.13182/NSE63-A17390 Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics