1. bookVolume 26 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
1898-0309
First Published
30 Dec 2008
Publication timeframe
4 times per year
Languages
English
Open Access

Attenuation parameters of polyvinyl alcohol-tungsten oxide composites at the photon energies 5.895, 6.490, 59.54 and 662 keV

Published Online: 25 Jun 2020
Volume & Issue: Volume 26 (2020) - Issue 2 (June 2020)
Page range: 77 - 85
Received: 05 Apr 2019
Accepted: 11 Mar 2020
Journal Details
License
Format
Journal
eISSN
1898-0309
First Published
30 Dec 2008
Publication timeframe
4 times per year
Languages
English

[1] Singh N, Singh KJ, Singh K, Singh H. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl Instrum Methods B. 2004;225(3):305-309.10.1016/j.nimb.2004.05.016Search in Google Scholar

[2] Arbuzov VI, Fyodorov YK. Spectral, radiation-optical and shielding properties of phosphate glasses with high lead content. Adv Mater Res. 2008;39-40:213-218.10.4028/www.scientific.net/AMR.39-40.213Search in Google Scholar

[3] Manohara SR, Hanagodimath SM, Gerward L. Photon interaction and energy absorption in glass: A transparent gamma ray shield. J Nucl Mater. 2009;393(3):465-472.10.1016/j.jnucmat.2009.07.001Search in Google Scholar

[4] Singh VP, Badiger NM. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys Chem. 2015;41(3):276-283.10.1134/S1087659615030177Search in Google Scholar

[5] Kaewkhao J, Limsuwan P. Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV. Nucl Instrum Methods. 2010;619(1-3):295-297.10.1016/j.nima.2009.11.033Search in Google Scholar

[6] Nambiar S, Yeow JTW. Polymer composite materials for radiation protection. ACS Appl Mater Interfaces. 2012;4(11):5717-5726.10.1021/am300783d23009182Search in Google Scholar

[7] Harish V, Nagaiah N, Harish Kumar HG. Lead oxides filled isophthalic resin polymer composites for gamma radiation shielding applications. Indian J Pure Appl Phy. 2012;50(11):847-850.Search in Google Scholar

[8] Li R, Gu Y, Zhang G, Yang Z, Li M, Zhang Z. Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Compos Sci Technol. 2017;143:67-74.10.1016/j.compscitech.2017.03.002Search in Google Scholar

[9] Husain HS, Rasheed Naji NA, Mahmood BM. Investigation of gamma ray shielding by polymer composites. IOP Conf Ser: Mater Sci Eng. 2018;454:012131.10.1088/1757-899X/454/1/012131Search in Google Scholar

[10] Yue K, Luo W, Dong X, et al. A new lead-free radiation shielding material for radiotherapy. Radiat Prot Dosim. 2009;133:256-260.10.1093/rpd/ncp05319329510Search in Google Scholar

[11] Wang H, Zhang H, Su Y, et al. Preparation and radiation shielding properties of Gd2O3/PEEK composites. Polym Compos. 2014;36(4):651-659.10.1002/pc.22983Search in Google Scholar

[12] Kim Y, Park S, Seo Y. Enhanced X-ray shielding ability of polymer-nonleaded metal composites by multilayer structuring. Ind Eng Chem Res. 2015;54(22):5968-5973.10.1021/acs.iecr.5b00425Search in Google Scholar

[13] Soylu HM, Lambrecht Y, Ersöz OA. Gamma radiation shielding efficiency of a new lead-free composite material. J Radioanal Nucl Chem. 2015;305(2):529-534.10.1007/s10967-015-4051-3Search in Google Scholar

[14] Erol A, Pocan I, Yanbay E, et al. Radiation shielding of polymer composite materials with wolfram carbide and boron carbide. Radiat Prot Environ. 2016;39(1):3-6.10.4103/0972-0464.185147Search in Google Scholar

[15] Atashi P, Rahmani S, Ahadi B, Rahmati A. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. J Mater Sci: Mater Electron. 2018;29(14):12306-12322.10.1007/s10854-018-9344-1Search in Google Scholar

[16] AbuAlRoos NJ, Baharul Amin NA, Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat Phys Chem. 2019;165:108439.10.1016/j.radphyschem.2019.108439Search in Google Scholar

[17] Chai H, Tang X, Ni M, et al. Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide. J Appl Polym Sci. 2016;133(10):43012.10.1002/app.43012Search in Google Scholar

[18] Ambika MR, Nagaiah N, Harish V, et al. Preparation and characterisation of isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat Phys Chem. 2017;130:351-358.10.1016/j.radphyschem.2016.09.022Search in Google Scholar

[19] Parvaresh R, Haghparast A, Khoshgard K, et al. An investigation to determine an optimum protective garment material in nuclear medicine. J Biomed Phys Eng. 2018;8(4):381-392.10.31661/jbpe.v8i4Dec.804Search in Google Scholar

[20] Gerward L, Guilbert N, Jensen KB, Leving H. WinXCom - a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004;71(3-4):653-654.10.1016/j.radphyschem.2004.04.040Search in Google Scholar

[21] Kerur R, Thontadarya SR, Hanumaiah B. Anomalous X-ray attenuation coefficients around the absorption edges using Mn Kα and Cu Kα X-rays. Appl Radiat Isot. 1994;45(2):159-163.10.1016/0969-8043(94)90005-1Search in Google Scholar

[22] Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: The Auto-Zeff software. Med Phys. 2012;39(4):1769-1778.10.1118/1.3689810Search in Google Scholar

[23] Bhavani S, Pavani Y, Ravi M, et al. Structural and electrical properties of pure and NiCl2 doped PVA polymer electrolytes. Am J Polym Sci. 2013;3(3):56-62.Search in Google Scholar

[24] Chang L, Zhang Y, Liu Y, et al. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl Instrum Methods Phys Res B. 2015;356;88-93.10.1016/j.nimb.2015.04.062Search in Google Scholar

[25] Rithin Kumar NB, Crasta V, Bhajantri RF, Praveen BM. Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J Polym. 2014; 2014: 1-7.10.1155/2014/846140Search in Google Scholar

[26] Hema M, Selvasekerapandian S, Hirankumar G, et alH. Structural and thermal studies of PVA:NH4I. J Phys Chem Solids. 2009;70(7):1098-1103.10.1016/j.jpcs.2009.06.005Search in Google Scholar

[27] Abd El-Kader KAM, Abdel Hamied SF, Mansour AB, et al. Effect of the molecular weights on the optical and mechanical properties of poly (vinyl alcohol) films. Polym Test. 2002;21(7):847-850.10.1016/S0142-9418(02)00020-XSearch in Google Scholar

[28] El-Khodary A. Evolution of the optical, magnetic and morphological properties of PVA films filled with CuSO4. Physica B: Condens Matter. 2010;405(16):3401-3408.10.1016/j.physb.2010.05.012Search in Google Scholar

[29] Bhavsar VB, Jha D. Study of refractive index dispersion and optical conductivity of PPy doped PVC films. Indian J Pure App Phys. 2016;54(2):105-110.Search in Google Scholar

[30] Habubi NF, Abed BH, Chiad SS. Optical properties of BaCl2 doped poly(vinyl alcohol) films. Iraqi J Phys. 2012;10(17):18-22.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo