Open Access

An analytical model for wicking in porous media based on statistical geometry theory


In this work, an analytical model describing liquid wicking phenomenon in porous media was constructed, based on the statistical geometry theory and the fractal theory. In the model, a new structure-property relationship, depicted by specific surface, porosity, tortuosity, pore fractal dimension, maximum pore size of the porous media, was introduced into the energy conservation equation. According to the theoretical model, the accumulated imbibition weight in porous media was achieved, and the predictions were verified by available experimental data published in different literatures. Besides, structure parameters influencing the imbibition process upon approaching equilibrium height were discussed. The model and results in this work are useful for the application of porous media in scientific research and industry.

Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering