Cite

1. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.Open DOISearch in Google Scholar

2. Francke, R., Schille, B. & Roemelt, M. (2018). Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 118 4631–4701.Search in Google Scholar

3. Xie, C., Chen, C., Yu, Y., Su, J., Li, Y., Somorjai, G.A. & Yang, P. (2017). Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett. 17, 3798–3802.10.1021/acs.nanolett.7b0113928493720Search in Google Scholar

4. Mozia, S., Darowna, D., Wróbel, R. & Morawski, A.W (2015). A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic reactor. J. Membr. Sci. 495 176–186. DOI: 10.1016/j.memsci.2015.08.024.Open DOISearch in Google Scholar

5. Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A. & Hackett, L.A. (2018). Carbon capture and storage. (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176.10.1039/C7EE02342ASearch in Google Scholar

6. Kapica-Kozar, J., Pirog, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Microporous Mesoporous Mater. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.Open DOISearch in Google Scholar

7. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Sreńscek-Nazzal, J., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorp. Sci. Technol. 36, 478–492. DOI: 10.1177/0263617417704527.Open DOISearch in Google Scholar

8. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A 129, 158–161. DOI: 10.12693/APhysPolA.129.158.Open DOISearch in Google Scholar

9. Sibera, D., Narkiewicz, U., Kapica, J., Serafin, J., Michalkiewicz, B., Wróbel, R.J. & Morawski, A.W. (2019). Preparation and characterisation of carbon spheres for carbon dioxide capture. J. Porous Mater. 26, 19–27. DOI: 10.1007/s10934-018-0601-8.Open DOISearch in Google Scholar

10. Kapica-Kozar, J., Michalkiewicz, B., Wróbel, R.J., Mozia, S., Pirog, E., Kusiak-Nejman, E., Serafin, J., Morawski, A.W. & Narkiewicz, U. (2017). Adsorption of carbon dioxide on TEPA-modified TiO2/titanate composite nanorods. New. J. Chem. 41, 7870–7885. DOI: 10.1039/c7nj01549f.Open DOISearch in Google Scholar

11. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Pirog, E., Jedrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. 2017. DOI: 10.1155/2017/7359591.Open DOISearch in Google Scholar

12. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.Open DOISearch in Google Scholar

13. Sreńscek-Nazzal, J. & Kielbasa, K. (2019). Advances in modification of commercial activated carbon for enhancement of CO2 capture. Appl. Surf. Sci. 494, 37–151. DOI: 10.1016/j.apsusc.2019.07.108.Open DOISearch in Google Scholar

14. Sreńscek-Nazzal, J. & Kielbasa, K. (2020). Microporous carbon foams for CO2 adsorption obtained from carbon nano-spheres. Przem. Chem. 99(1), 70–73. DOI: 10.15199/62.2020.1.7.Open DOISearch in Google Scholar

15. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.Open DOISearch in Google Scholar

16. Serafin, J., Baca, Martyna., Biegun, M., Mijowska, E., Kalenczuk, R.J., Sreńscek-Nazzar, J. & Michalkiewicz, B. (2019). Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Appl. Surf. Sci. 497. DOI: 10.1016/j.apsusc.2019.143722.Open DOISearch in Google Scholar

17. Kapica-Kozar, J., Pirog, E., Kusiak-Nejman, E., Wróbel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New. J. Chem. 41, 1549–1557. DOI: 10.1039/c6nj02808j.Open DOISearch in Google Scholar

18. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.Open DOISearch in Google Scholar

19. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A 129, 394-401. DOI: 10.12693/APhysPolA.129.394.Open DOISearch in Google Scholar

20. Li, J., Michalkiewicz, B., Min, J., Ma, C., Chen, X., Gong, J., Mijowska, E. & Tang, T. (2019). Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chem. Eng. J. 360, 250–259. DOI: 10.1016/j.cej.2018.11.204.Open DOISearch in Google Scholar

21. Kukulka, W., Cendrowski, K., Michalkiewicz, B. & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 adsorption. RSC Adv. 9, 34349–34349. DOI: 10.1039/c9ra90077b.907385335529994Open DOISearch in Google Scholar

22. Shi, X., Gong, J., Kierzek, K., Michalkiewicz, B., Zhang, S., Chu, P.K., Chen, X., Tang, T. & Mijowska, E. (2019). Multifunctional nitrogen-doped nanoporous carbons derived from metal-organic frameworks for efficient CO2 storage and high-performance lithium-ion batteries. New. J. Chem. 43, 10405–10412. DOI: 10.1039/c9nj01542f.Open DOISearch in Google Scholar

23. Zgrzebnicki, M., Michalczyszyn, E. & Wrobel, R.J. (2018). Improving the Carbon Dioxide Uptake Efficiency of activated Carbons Using a Secondary Activation With Potassium Hydroxide, Pol. J. Chem. Technol., 20(3), 87–94. DOI: 10.2478/pjct-2018-0043.Open DOISearch in Google Scholar

24. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.Open DOISearch in Google Scholar

25. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.Open DOISearch in Google Scholar

26. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.Open DOISearch in Google Scholar

27. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.Open DOISearch in Google Scholar

28. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10, 20–26. DOI: 10.2478/v10026-008-0023-5.Open DOISearch in Google Scholar

29. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.Open DOISearch in Google Scholar

30. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.Open DOISearch in Google Scholar

31. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82, 627–628.Search in Google Scholar

32. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.Open DOISearch in Google Scholar

33. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.Open DOISearch in Google Scholar

34. Jarosinska, M., Lubkowski, K., Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.Open DOISearch in Google Scholar

35. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.Open DOISearch in Google Scholar

36. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrog. Energy 41, 8668–8678. DOI: 10.1016/j.ijhydene.2016.01.097.Open DOISearch in Google Scholar

37. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.Open DOISearch in Google Scholar

38. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.Open DOISearch in Google Scholar

39. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21. DOI: 10.1088/0957-4484/21/14/145308.20234080Open DOISearch in Google Scholar

40. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrog. Energy 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.Open DOISearch in Google Scholar

41. Sreńscek-Nazzal, J., Kamińska, Weronika., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sug-arcane molasses. Ind. Crops Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.Open DOISearch in Google Scholar

42. Keller, N., Ducamp, M., Robert, D., Keller, V. (2013) Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation, Chem. Rev. 113(7), 5029–5070. DOI: 10.1021/cr900398v.23590210Open DOISearch in Google Scholar

43. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.Open DOISearch in Google Scholar

44. Wenelska, K., Michalkiewicz, B., Gong, Jiang., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrog. Energy 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.Open DOISearch in Google Scholar

45. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kaleńczuk, R.J. & Zielińska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int. J. Hydrog. Energy 42, 30461–30469. DOI: 10.1016/j.ijhydene.2017.10.146.Open DOISearch in Google Scholar

46. Kukulka, W., Cendrowski, K., Michalkiewicz, B. & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 absorption. RSC Adv. 9, 18527–18537. DOI: 10.1039/c9ra01786k.906481835515267Open DOISearch in Google Scholar

47. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, Xin. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustain. Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.Open DOISearch in Google Scholar

48. Zielińska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kaleńczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres. (OMHCS) for hydrogen storage. Chem. Phys. Lett. 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.Open DOISearch in Google Scholar

49. Baca, M.., Cendrowski, K., Kukulka, W., Bazarko, G., Moszynski, D., Michalkiewicz, B., Kalenczuk, R.J. & Zielińska, B. (2018). A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials 8. DOI: 10.3390/nano8090639.616331430134612Open DOISearch in Google Scholar

50. Zielińska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Research Letters 10. DOI: 10.1186/s11671-015-1113-y.462797026518029Open DOISearch in Google Scholar

51. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.Open DOISearch in Google Scholar

52. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, Rafal. J., Koren, Z.C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873–881. DOI: 10.1016/j.apsusc.2017.05.136.Open DOISearch in Google Scholar

53. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A, 329, 137–147. DOI: 10.1016/j.apcata.2007.07.006.Open DOISearch in Google Scholar

54. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. 6, 397–401. DOI: 10.1515/gps-2016-0148.Open DOISearch in Google Scholar

56. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.Open DOISearch in Google Scholar

57. Wróblewska, A., Serafin, J., Gawarecka, A., Miadlicki, P., Urbas, K., Koren, Z.C., Llorca, J. & Michalkiewicz, B. (2020). Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Letters 30, 189–198. DOI: 10.1007/s42823-019-00084-2.Open DOISearch in Google Scholar

58. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2018). Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. React. Kinet. Mech. Catal. 125, 843–858. DOI: 10.1007/s11144-018-1468-z.Open DOISearch in Google Scholar

59. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption 23, 551–61. DOI: 10.1007/s10450-017-9867-4.Open DOISearch in Google Scholar

60. Kielbasa, K., Maciejewska, N., Kaminska, A. & Sreń-scek-Nazzal, J. (2020). Porous carbon materials obtained from molasses carbon spheres. Przem. Chem. 99(11), 1636–1639. DOI: 10.15199/62.2020.11.9.Open DOISearch in Google Scholar

61. Zhao, X., Hirogaki, K., Tabata, I., Okubayashi, S. & Hori. T. (2006). A new method of producing conductive aramid fibers using supercritical carbon dioxide. Surf. Coat. Technol. 201(3–4) 628–636. DOI: 10.1016/j.surfcoat.2005.12.021.Open DOISearch in Google Scholar

62. Prasad,V.V. & Talupula, S. (2018). A Review on Reiforcement of Basalt and Aramid (Kevlar 129) fibers. Mater. Today 5(2), 5993–5998. DOI: 10.1016/j.matpr.2017.12.202.Open DOISearch in Google Scholar

63. Sutanu, S. & Singh, T.J. (2015). Characterisation of Kevlar Fiber and Its Composites: A Review. Mater. Today 2(4–5), 1381–1387. DOI: 10.1016/j.matpr.2015.07.057.Open DOISearch in Google Scholar

64. Qin, J., Guo, B., Zhang, L., Wang, T., Zhang, G. & Shi, X. (2020). Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos. B. Eng. 183, 107686. DOI: 10.1016/j.compositesb.2019.107686.Open DOISearch in Google Scholar

65. Venkataraman, M., Xiong, X., Novotna, J., Kasparova, M., Mishra, R. & Militky, J. (2019) Thermal Protective Properties of Aerogel-coated Kevlar Woven Fabrics, J. Fib. Bioeng. Inform.12, 93–101. DOI: 10.3993/jfbim00321.Open DOISearch in Google Scholar

66. Balaji, R., Nadarajana, M., Selokara, A., Kumara, S. & Sivakumar S. (2019). Modelling and analysis of Disk Brake under Tribological behaviour of Al-Al2O3 Ceramic Matrix Composites/Kevlar® 119 composite/C/Sic-Carbon Matrix Composite/Cr-Ni-Mo-V steel. Mater. Today 18, 3415–3427.Search in Google Scholar

67. https://www.dupont.com/brands/kevlar.html; access time 2021.06.08.Search in Google Scholar

68. Castro-Muniz, A., Martınez-Alonso, A. & Tascon, J.M.D. (2008). Microporosity and mesoporosity of PPTA-derived carbons. Effect of PPTA thermal pretreatment, Microporous and Mesoporous Mater. 114, 185–192. DOI: 10.1016/j.micromeso.2008.01.003.Open DOISearch in Google Scholar

69. Conte, G., Stelitano, S., Policicchio, A., Minuto, F.D., Lazzaroli, V., Galiano, F. & Agostino, R.G. (2020). Assessment of activated carbon fibers from commercial Kevlar® as nanostructured material for gas storage: Effect of activation procedure and adsorption of CO2 and CH4. J. Anal. Appl. Pyrolysis 152, 104974. DOI: 10.1016/j.jaap.2020.104974.Open DOISearch in Google Scholar

70. Zhang, Z., Yang, S., Zhang, P., Zhang, J., Chen, G. & Feng, X. (2019). Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920. DOI: 10.1038/s41467-019-10885-8.Open DOISearch in Google Scholar

71. Suarez-Garcia, F., Martinez-Alonso, A. & Tascon, J.M.D. (2004). Nomex polyaramid as a precursor activated carbon fibers by phosphoric acid activation. Temperature and time effects. Microporous Mesoporous Mater. 75(1–2), 73–80. DOI: 10.1016/j.micromeso.2004.07.004.Open DOISearch in Google Scholar

72. Castro-Muniz, A., Martinez-Alonso, A. & Tascon, J.M.D. (2009). Effect of PPTA pre-impregnation with phosphoric acid on the porous materials texture of carbons materials prepared by CO2 activation of PPTA chars. Microporous Mesoporous Mater. 119(1–3), 284–289. DOI: 10.1016/j.micromeso.2008.10.025.Open DOISearch in Google Scholar

73. Choma, J., Osuchowski, Ł., Marszewski, M., Dziura, A. & Jaroniec, M. (2016). Developing microporosity in Kevlar1-derived carbon fibers by CO2 activation for CO2 adsorption. J. CO2 Util. 16, 17-22. DOI: 10.1016/j.jcou.2016.05.004 2212-9820.Open DOISearch in Google Scholar

74. Villar-Rodil, S., Navarrete, R., Denoyel, R., Albiniak, A., Paredes, J.I, Martinez-Alonso, A. & Tascon, J.M.D. (2005). Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures. Micro-porous Mesoporous Mater. 77(2–3), 109–118. DOI: 10.1016/j.micromeso.2004.08.017.Open DOISearch in Google Scholar

75. Villar-Rodil, S., Denoyel, R., Rouquerol, J. Martinez-Alonso, A. & Tascon, J.M.D. (2002). Characterization of aramid based activated carbon fibres by adsorption and immersion techniques. Carbon. 40(8), 1376–1380. DOI: 10.1016/S0008-6223(02)00114-8.Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering