Open Access

Internal Micro-electrolysis Using Fe/C Material for Pre-Treatment of Concentrated Coking Wastewater


Cite

1. Liu, L., He, D., Pan, F., Huang, R., Lin, H. & Zhang, X. (2020). Comparative study on treatment of methylene blue dye wastewater by different internal electrolysis systems and COD removal kinetics, thermodynamics and mechanism. Chemo-sphere, 238, 124671. DOI: 10.1016/j.chemosphere.2019.124671.31473527Open DOISearch in Google Scholar

2. Kang, M., Chen, Q., Li, J., Liu, M. & Weng, Y. (2019). Preparation and study of a new type of Fe–C microelectrolysis filler in oil-bearing ballast water treatment. Environ. Sci. Pollut. Res., 26, 10673–10684. DOI: 10.1007/s11356-019-04480-z.30778943Open DOISearch in Google Scholar

3. Zheng, X., Jin, M., Zhou, X., Chen, W., Lu, D., Zhang, Y. & Shao, X. (2019). Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant. Sci. The Total Environ., 649, 21–30. DOI: 10.1016/j.scitotenv.2018.08.195.30170213Open DOISearch in Google Scholar

4. Zhang, L., Yue, Q., Yang, K., Zhao, P. & Gao, B. (2018). Analysis of extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofloxacin. Chemosphere, 193, 645–654. DOI: 10.1016/j.chemosphere.2017.11.056.29169139Open DOISearch in Google Scholar

5. Wang, Y., Wu, X., Yi, J., Chen, L., Lan, T. & Dai, J. (2018). Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H2O2 process. Water Sci. Technol., 2017(3), 707–717. DOI: 10.2166/wst.2018.244.30016288Open DOISearch in Google Scholar

6. Ma, W., Han, Y., Xu, C., Han, H., Ma, W., Zhu, H., Li, K. & Wang, D. (2018). Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition. Biores. Technol., 251, 303–310, DOI: 10.1016/j.biortech.2017.12.042.29289874Open DOISearch in Google Scholar

7. Liu, M., Wang, L., Xiao, X. & He, Z. (2018). Fe/C micro-electrolysis and Fenton oxidation process for the removal of recalcitrant colored pollutants from mid-stage pulping effluent. J. Biores. Bioproducts, Vol 3, 118–122 Pages, DOI: 10.21967/JBB.V3I3.56.Open DOISearch in Google Scholar

8. Ji, Q., Tabassum, S., Hena, S., Silva, C.G., Yu, G. & Zhang, Z. (2016). A review on the coal gasification wastewater treatment technologies: past, present and future outlook. J. Cleaner Product., 126, 38–55, DOI: 10.1016/j.jclepro.2016.02.147.Open DOISearch in Google Scholar

9. Zhao, Q. & Liu, Y. (2016). State of the art of biological processes for coal gasification wastewater treatment. Biotech. Adv., 34, 1064–1072. DOI: 10.1016/j.biotechadv.2016.06.005.27364381Open DOISearch in Google Scholar

10. Xu, L., Wang, J., Zhang, X., Hou, D. & Yu, Y. (2015). Development of a novel integrated membrane system incorporated with an activated coke adsorption unit for advanced coal gasification wastewater treatment. Colloids Surf. A: Phys. Eng. Aspects, 484, 99–107. DOI: 10.1016/j.colsurfa.2015.07.062.Open DOISearch in Google Scholar

11. Li, P., Ailijiang, N., Cao, X., Lei, T., Liang, P., Zhang, X., Huang, X. & Teng, J. (2015). Pretreatment of coal gasification wastewater by adsorption using activated carbons and activated coke. Colloids Surf. A: Phys. Eng., Aspects, 482, 177–183. DOI: 10.1016/j.colsurfa.2015.05.006.Open DOISearch in Google Scholar

12. Huang, L., Sun, G., Yang, T., Zhang, B., He, Y. & Wang, X. (2013). A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater. Desalination, 309, 91–96. DOI: 10.1016/j.desal.2012.09.029.Open DOISearch in Google Scholar

13. Fan, J.H. & Ma, L.M. (2009). The pretreatment by the Fe–Cu process for enhancing biological degradability of the mixed wastewater. J. Hazard. Mater., 164, 1392–1397. DOI: 10.1016/j.jhazmat.2008.09.115.19019539Open DOISearch in Google Scholar

14. Yin, X., Bian, W. & Shi, J. (2009). 4-chlorophenol degradation by pulsed high voltage discharge coupling internal electrolysis. J. Hazard. Mater., 166, 1474–1479. DOI: 10.1016/j.jhazmat.2008.12.094.19179008Open DOISearch in Google Scholar

15. Huong, D.T., Nguyen, V.T., Ha, X.L., Nguyen, H.L., Thi, Duong, T.T., Nguyen, D.Ch. & Nguyen, H.-T., Thi. (2020). Enhanced Degradation of Phenolic Compounds in Coal Gasification Wastewater by Methods of Microelectrolysis Fe-C and Anaerobic-Anoxic-Oxic Moving Bed Biofilm Reactor (A2O-MBBR). Processes, 8, 1258. DOI: 10.3390/pr8101258.Open DOISearch in Google Scholar

16. Guan, X., Xu, X., Lu, M. & Li, H. (2012). Pretreatment of Oil Shale Retort Wastewater by Acidification and Ferric-Carbon Micro-Electrolysis. Energy Procedia, 17, 1655–1661. DOI: 10.1016/j.egypro.2012.02.294.Open DOISearch in Google Scholar

17. Ying, D., Peng, J., Li, K., Wang, Y., Pan, S. & Jia, J. (2013). Dual-cell reduction and group effect in an internal microelectrolysis reactor. Electrochimica Acta, 89, 861–867. DOI: 10.1016/j.electacta.2012.10.158.Open DOISearch in Google Scholar

18. Zhu, Q., Guo, S., Guo, C., Dai, D., Jiao, X., Ma, T. & Chen, J. (2014). Stability of Fe–C micro-electrolysis and biological process in treating ultra-high concentration organic wastewater. Chem. Engin. J., 255, 535–540. DOI: 10.1016/j.cej.2014.05.138.Open DOISearch in Google Scholar

19. Lai, B., Zhang, Y., Chen, Z., Yang, P., Zhou, Y. & Wang, J. (2014). Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Appl. Catal. B: Environ., 144, 816–830. DOI: 10.1016/j.apcatb.2013.08.020.Open DOISearch in Google Scholar

20. Chemical oxygen demand (COD), (SMEWW 5220D:2012: 2008) Biochemical oxygen demand (BOD) (ISO 5815-2 : 2003); Phenol (SMEWW 5530C:2012), Cyanide (SMEWW-4500CN), NH4+ (C&E:2012, ISO 14911 : 1998).Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering