Open Access

Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives


Cite

1. Feuer, G. (1974). The Metabolism and Biological Actions of Coumarins, in Progress in medicinal chemistry, Elsevier, 85–158. DOI: 10.1016/S0079-6468(08)70267-4.Open DOISearch in Google Scholar

2. Evans, W.C. (2009). Trease and evans’ pharmacognosy E-book, Elsevier Health Sciences.Search in Google Scholar

3. Hatano, T., Yasuhara, T., Fukuda, T., Noro, T. & Okuda, T. (1989). Phenolic Constituents of Licorice. II.: Structures of Licopyranocoumarin, Licoarylcoumarin and Glisoflavone, and Inhibitory Effects of Licorice Phenolics on Xanthine Oxidase. Chem. Pharm. Bull. 37, 3005–3009. DOI: 10.1248/cpb.37.3005.Open DOISearch in Google Scholar

4. Rosselli, S., Maggio, A.M., Faraone, N., Spadaro, V., Morris-Natschke, S.L., Bastow, K.F., Lee K.-H. & Bruno, M. (2009). The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Natural product communications 4(12), 1701–1706. DOI: 10.1177/1934578X0900401219.Open DOISearch in Google Scholar

5. Teng, C.-M., Lin, C.-H., Ko, F.-N., Wu, T.-S. & Huang, T.-F. (1994). The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn-Schmiedeberg’s Archives of Pharmacology 349, 202–208. DOI: 10.1007/BF00169838.Open DOISearch in Google Scholar

6. Whang, W.K., Park, H.S., Ham, I., Oh, M., Namkoong, H., Kim, H.K., Hwang, D.W., Hur, S.Y., Kim, T.E., Park, Y.G., Kim, J.-R. & Kim, J. W. (2005). Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experim. Molec. Med. 37, 436–446. DOI: 10.1038/emm.2005.54.Open DOISearch in Google Scholar

7. Patil, A.D., Freyer, A.J., Eggleston, D.S., Haltiwanger, R.C., Bean, M.F., Taylor, P.B., Caranfa, M.J., Breen, A.L. & Bartus, H.R. (1993). The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 36, 4131–4138. DOI: 10.1021/jm00078a001.Open DOISearch in Google Scholar

8. Spino, C., Dodier, M. & Sotheeswaran, S. (1998). Anti-HIV coumarins from calophyllum seed oil. Bioorg. Med. Chem. Letters 8, 3475–3478. DOI: 10.1016/S0960-894X(98)00628-3.Open DOISearch in Google Scholar

9. Poole, S.K. & Poole, C.F. (1994). Thin-layer chromatographic method for the determination of the principal polar aromatic flavour compounds of the cinnamons of commerce. Analyst 119, 113–120. DOI: 10.1039/AN9941900113Open DOISearch in Google Scholar

10. Crichton, E.G. & Waterman, P.G. Dihydromammea C/OB: A new coumarin from the seed of Mammea africana. (1978). Phytochemistry 17, 1783–1786. DOI: 10.1016/S0031-9422(00)88695-1Open DOISearch in Google Scholar

11. Shin, E., Choi, K.-M., Yoo, H.-S., Lee, C.-K., Hwang, B.Y. & Lee M.K. (2010). Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biologi. and Pharmac. Bulle. 33, 1610–614. DOI: 10.1248/bpb.33.161020823583Open DOISearch in Google Scholar

12. Baek, N.I., Ahn, E.M., Kim, H.Y. & Park, Y.D. (2000). Furanocoumarins from the root of Angelica dahurica. Arch. Pharmac. Res. 23, 467–470. DOI: 10.1007/BF0297657411059825Open DOISearch in Google Scholar

13. Piller, N.B. (1975). A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. British J. Experim. Patholog, 56, 554–560.Search in Google Scholar

14. Emami, S. & Dadashpour, S. (2015). Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem. 102, 611–30. DOI: 10.1016/j.ejmech.2015.08.03326318068Open DOISearch in Google Scholar

15. Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). The antiproliferative effect of coumarins on several cancer cell lines. Anticancer Res., 21, 917–923.Search in Google Scholar

16. Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S.L. & Lee, K.-H. (2003). Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev., 23, 322–345. DOI: 10.1002/med.1003412647313Open DOISearch in Google Scholar

17. Al-Ghareeb, M.S., Heba, A.E. & Abd-Allah, R.M. (2018). In Vitro Antitumor Evaluation of Some New Tetra Substituted 1,2,4-Triazines, Latin Amer. J. Pharmacy, 37, 1035–1045. http/www.who.int/newa-room/fact-sheet/detailed/cancer (retrived on 30 Nov 2018 ).Search in Google Scholar

19. Dong, P., Rakesh, K.P., Manukumar, H.M., Mohammed, Y.H.E., Karthik, C.S., Sumathi, S., Mallu, P. & Qin, H.-L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem., 85, 325–336. DOI: 10.1016/j.bioorg.2019.01.01930658232Open DOISearch in Google Scholar

20. Moku, B., Ravindar, L., Rakesh, K.P. & Qin H.-L. (2019). The significance of N-methylpicolinamides in the development of anticancer therapeutics: Synthesis and structure-activity relationship (SAR) studies. Bioorg. Chem. 86, 513–537. DOI: 10.1016/j.bioorg.2019.02.03030782571Open DOISearch in Google Scholar

21. Zhang, X., Rakesh, K.P., Shantharam, C.S., Manukumar, H.M., Asir,i A.M., Marwani, H.M. & Qin, H.-L. (2018). Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem. 26, 340–355. DOI: 10.1016/j.bmc.2017.11.02629269253Open DOISearch in Google Scholar

22. Zha, G.-F., Qin, H.-L., Youssif, B.G.M., Amjad, M.W., Raja, M.A.G., Abdelazeem, A.H. & Bukhari, S.N.A. (2017). Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Europ. J. Med. Chem. 135, 34–48. DOI: 10.1016/j.ejmech.2017.04.02528431353Open DOISearch in Google Scholar

23. Qin, H.-L., Leng, J., Zhang, C.-P., Jantan, I., Amjad, M.W., Sher, M., Naeem-ul-Hassan, M., Hussain, M.A. & Bukhari, S.N.A. (2016). Synthesis of α,β-Unsaturated Carbonyl-Based Compounds, Oxime and Oxime Ether Analogs as Potential Anticancer Agents for Overcoming Cancer Multidrug Resistance by Modulation of Efflux Pumps in Tumor Cells. J. Med. Chem.59, 3549–3561. DOI: 10.1021/acs.jmedchem.6b0027627010345Open DOISearch in Google Scholar

24. Qin, H.-L., Leng, J., Youssif, B.G.M., Amjad, M.W., Raja, M.A.G., Hussain, M.A., Hussain, Z., Kazmi, S.N. & Bukhari S.N.A. (2017). Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents. Chem. Biol. & Drug Design 90, 443–449. DOI: 10.1111/cbdd.1296428186369Open DOISearch in Google Scholar

25. Singh, J., Sharma, S., Saxena, A.K., Nepali, K. & Bedi P.M.S. (2013). Synthesis of 1,2,3-triazole tethered bifunctional hybrids by click chemistry and their cytotoxic studies. Med. Chem. Res. 22, 3160–3169. DOI: 10.1007/s00044-012-0312-7Open DOISearch in Google Scholar

26. Singh, H., Singh, J.V., Gupta, M.K., Saxena, A.K., Sharma, S., Nepali, K. & Bedi, P.M.S. (2017). Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Letters 27, 3974–3979. DOI: 10.1016/j.bmcl.2017.07.06928797799Open DOISearch in Google Scholar

27. Kamath, P.R., Sunil, D., Joseph, M.M., Abdul, Salam, A.A. & T.T. S. (2017). Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem. 136, 442–451. DOI: 10.1016/j.ejmech.2017.05.03228525842Open DOISearch in Google Scholar

28. Elshemy, H.A.H. & Zaki, M.A. (2017). Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. & Med. Chem.25, 1066–1075. DOI: 10.1016/j.bmc.2016.12.01928038941Open DOISearch in Google Scholar

29. Rizzk, Y., El-Deen, I., Mohammed, F., Abdelhamid, M. & Khedr, A. (2019). In Vitro Antitumor Evaluation of Some Hybrid Molecules Containing Coumarin and Quinolinone Moieties. Anti-cancer Agents in Med. Chem., 19(16), 2010–2018. DOI: 10.2174/187152061966619093014385631566140Open DOISearch in Google Scholar

30. Song, X.F., Fan, J., Liu, L., Liu, X.F. & Gao, F. (2020). Coumarin derivatives with anticancer activities: An update. Arch. Pharm., 353, e2000025. DOI: 10.1002/ardp.20200002532383190Open DOISearch in Google Scholar

31. Akkol, E.K., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E. & Capasso, R. (2020). Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 12, 1959. DOI: 10.3390/cancers12071959740904732707666Open DOISearch in Google Scholar

32. Al-Warhi, T., Sabt, A., Elkaeed, E.B. & Eldehna, W.M. (2020). Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem., 103, 104163. DOI: 10.1016/j.bioorg.2020.10416332890989Open DOISearch in Google Scholar

33. Goud, N.S., Kumar, P. & Bharath, R.W. (2020). Recent developments of target based coumarin derivatives as potential anticancer agents. Mini-Rev. Med. Chem., 20, 1754–1766. DOI: 10.2174/138955752066620051000071832386492Open DOISearch in Google Scholar

34. Endo, S., Oguri, H., Segawa, J., Kawai, M., Hu, D., Xia, S., Okada, T., Irie, K., Fujii, S. & Gouda, H. (2020). Development of novel AKR1C3 inhibitors as new potential treatment for castration-resistant prostate cancer. Med. Chem., 63, 10396–10411. DOI: 10.1021/acs.jmedchem.0c0093932847363Open DOISearch in Google Scholar

35. Wang, C., Xi, D., Wang, H., Niu, Y., Liang, L., Xu, F., Peng, Y. & Xu, P. (2020). Hybrids of MEK inhibitor and NO donor as multitarget antitumor drugs. Eur. J. Med. Chem., 196, 112271. DOI: 10.1016/j.ejmech.2020.11227132305784Open DOISearch in Google Scholar

36. Xu, J., Li, H., Wang, X., Huang, J., Li, S., Liu, C., Dong, R., Zhu, G., Duan, C. & Jiang, F. (2020). Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity. Eur. J. Med. Chem., 200, 112424. DOI: 10.1016/j.ejmech.2020.11242432447197Open DOISearch in Google Scholar

37. Sumorek-Wiadro, J., Zajac, A., Langner, E., Skalicka-Woźniak, K., Maciejczyk, A., Rzeski, W. & Jakubowicz-Gil, J. (2020). Antiglioma potential of coumarins combined with Sorafenib. Molecules 25, 5192. DOI: 10.3390/molecules25215192766465633171577Open DOISearch in Google Scholar

38. Sumorek-Wiadro, J., Zajac, A., Badziul, D., Langner, E., Skalicka-Woźniak, K., Maciejczyk, A., Wertel, I., Rzeski, W. & Jakubowicz-Gil, J. (2020). Coumarins modulate the anti-glioma properties of temozolomide. Eur. J. Pharmacol., 881, 173207. DOI: 10.1016/j.ejphar.2020.17320732446712Open DOISearch in Google Scholar

39. El-Deen, I. & Ibrahim, H. (2004). Synthesis and electron impact of mass spectra of 3-substituted chromeno [3, 2-c] chromen-6, 7-diones. Chem. Papers-Slovak Academy of Sci. 58, 200–204.Search in Google Scholar

40. El-Deen, I., Elgareib, M.S., Mahdy, A.R. & Al-Saleem, M.S. (2018). NMR Spectra Investigation of Some New Prepared Tetrasubstituted Coumarin Derivatives. Mens Agitat, 13.Search in Google Scholar

41. Moustafa, A.M.Y. & Bakare, S.B. (2019). Synthesis of Some Hybrid 7-Hydroxy Quinolinone Derivatives As Anti Breast Cancer Drugs. Res. Chem. Intermed. 45, 3895–3912. DOI: 10.1007/s11164-019-03827-yOpen DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering