Open Access

Numerical investigation of the turbulent flow generated with a radial Turbine using a converging hollow blade


Cite

1. Van’t riet, K., Boom, J.M. & Smith. J.M. (1976). Power consumption impeller coalescence and recirculation in aerated vessels. Trans. I. Chem E. 541, 124-131.Search in Google Scholar

2. Bakker, A., Myers, K.J. & Smith, J.M (1994). How to disperse gases in liquids. Chemical Engineering. 101, 98-104, from http://www.bakker.org/cfm/publications/HowtoDisperse-GasesinLiquids1994.pdfSearch in Google Scholar

3. Nienow, A.W. (1996). Gas-Liquid Mixing Studies, A comparison of Rushton Turbines with some modern impellers. Trans. I. Chem. E. 74 A, 417-423. DOI: 10.1002/cjce.5450800409.10.1002/cjce.5450800409Open DOISearch in Google Scholar

4. Nagata, S. (1975). Mixing Principals and Applications. John Wiley & sons Halstead Press Tokyo Japan.Search in Google Scholar

5. Suzukawa, K., Mochizukib, S. & Osaka, H. (2006). Effect of the attack angle on the roll and trailing vortex structures in an agitated vessel with a paddle impeller. Chem. Engineer. Sci. 61, 2791-2798. DOI: http://dx.doi.org/10.1016/j.ces.2005.10.063.10.1016/j.ces.2005.10.063Open DOISearch in Google Scholar

6. Kumaresan, T. & Joshi, J.B. (2006). Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. Sci. 1153, 173-193. DOI: 10.1016/j.cej.2005.10.002.10.1016/j.cej.2005.10.002Open DOISearch in Google Scholar

7. Driss, Z., Bouzgarrou, G., Chtourou, W., Kchaou, H. & Abid, M.S. (2010). Computational studies of the pitched blade turbines design effect on the stirred tank flow characteristics. European J. Mechanics B/Fluids. 29, 236-245. DOI: 10.1016/j.euromechflu.2010.01.006.10.1016/j.euromechflu.2010.01.006Open DOISearch in Google Scholar

8. Ammar, M., Chtourou, W., Driss, Z. & Abid, M.S. (2011). Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system. Energy, 36, 5081-5093. DOI: http://dx.doi.org/10.1016/j.energy.2011.06.002.10.1016/j.energy.2011.06.002Search in Google Scholar

9. Aubin, J., P. Mavros, D. Fletcher, J. & Bertrand C. Xuereb. (2001) .Effect of axial agitator configuration up-pumping down-pumping reverse rotation on flow patterns generated in stirred vessels. Chem. Engineer. Res. Design. 79, 845-856. DOI: 10.1205/02638760152721046.10.1205/02638760152721046Open DOISearch in Google Scholar

10. Chapple, D., S. kresta, Wall, A. & Afcan, A. (2002). The effect of Impeller and Tank Geometry on Power Number for a pitched blade turbine. Chem. Engineer. Res. Design. 804, 364-372. DOI: http://dx.doi.org/10.1205/02638760231744640710.1205/026387602317446407Search in Google Scholar

11. Ameur, H. & Bouzit, M. (2013) .Numerical investigation of flow induced by a disc turbine in unbaffled stirred tank. Acta Sci. Tech. 35, 469-476. DOI: http://dx.doi.org/10.4025/actascitechnol.v35i3.1555410.4025/actascitechnol.v35i3.15554Open DOISearch in Google Scholar

12. Ameur, H. & Bouzit, M. (2013). 3D hydrodynamics and shear rates variability in the united states pharmacopeia paddle dissolution apparatus. Int. J. Pharm. 452, 42−51. DOI: 10.1016/j.ijpharm.2013.04.04910.1016/j.ijpharm.2013.04.04923680733Open DOISearch in Google Scholar

13. Ameur, H. (2015) .Energy efficiency of different impellers in stirred tank reactors. Energy. 93, 1980-1988. DOI: doi. org/10.1016/j.energy.2015.10.084.10.1016/j.energy.2015.10.084Open DOISearch in Google Scholar

14. Khapre, A. & Munshi, B. (2014) .Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank. International Scholarly and Scientific Research & Innovation. 811, 1235-1242. Available at: scholar.waset.org/1999.2/5555526.Search in Google Scholar

15. Driss, Z., Karray, S., Chtourou, W., Kchaou, H. & Abid, M.S (2012).A study of mixing structure in stirred tanks equipped with multiple four-blade Rushton impellers., The Archive of Mechanical Engineering. 591, 53-72. DOI: https://doi.org/10.2478/v10180-012-0004-3.10.2478/v10180-012-0004-3Open DOISearch in Google Scholar

16. Ben Amira, B., Driss, Z. & Abid, M.S. (2015). PIV study of the turbulent flow in a stirred vessel equipped by an eight concave blades turbine. Fluid Mechanics. 12, 5-10. DOI: 10.11648/j.fm.20150102.11.Search in Google Scholar

17. Ben Amira, B., Driss, Z. & Abid, M.S. (2015).Experimental study of the up-pitching blade effect with a PIV application. Ocean Engineer. 102, 95-104. DOI: 10.1016/j.oceaneng.2015.08.063.10.1016/j.oceaneng.2015.08.063Open DOISearch in Google Scholar

18. Cooke, M. & Heggs, P.J. (2005). Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions. Chem. Engineer. Sci. 60, 5529-5543. DOI: https://doi.org/10.1016/j.ces.2005.05.01810.1016/j.ces.2005.05.018Open DOISearch in Google Scholar

19. Ghotli, R.A., Abdul, Aziz A.R., Ibrahim, S., Baroutian, S. & Arami-Niya, A. (2013). Study of various curved-blade impeller geometries on power consumption in stirred vessel using response surface methodology. J. Taiwan Inst. Chem. Eng.44, 192-201. DOI: http://dx.doi.org/10.1016/j.jtice.2012.10.01010.1016/j.jtice.2012.10.010Open DOISearch in Google Scholar

20. Jing, Z., Zhengming, G. & Yuyun, B., (2011). Effects of the Blade Shape on the Trailing Vortices in Liquid Flow Generated by Disc Turbines. Chinese J. Chem. Engineer. 19(2), 232-242. DOI: 10.1016/S1004-9541(11)60160-2.10.1016/S1004-9541(11)60160-2Open DOISearch in Google Scholar

21. Chtourou, W., Ammar, M., Driss, Z. & Abid, M.S. (2011). Effect of the turbulence models on Rushton turbine generated flow in a stirred vessel. Cent. Eur. J. Eng. 1(4), 380-389. DOI: 10.2478/s13531-011-0039-0.10.2478/s13531-011-0039-0Open DOISearch in Google Scholar

22. Jaworski, Z. & Zakrzewska, B. (2002). Modeling of the turbulent wall jet generated by a pitched blade turbine impeller. Trans Ichem. E. 80(8), 846-854. DOI: http://dx.doi.org/10.1205/026387602321143381.10.1205/026387602321143381Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering