Open Access

Encapsulated catalase from Serratia genus for H2O2 decomposition in food applications


Cite

1. WHO Food Additives series no. 5 (1973). Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents.Search in Google Scholar

2. Hsu, C.L., Chang, K.S. & Kuo, J.C. (2008). Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control, 19, 223-230. DOI: 10.1016/j.foodcont.2007.01.004.10.1016/j.foodcont.2007.01.004Open DOISearch in Google Scholar

3. Kanyong, P., Rawlinson, S. & Davis, J. (2016). A non- -enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk. J. Electroanalyt. Chem. 766, 147-151. DOI: https://doi.org/10.1016/j.jelechem.2016.02.006.10.1016/j.jelechem.2016.02.006Open DOISearch in Google Scholar

4. Law, B.A. (2010). Enzymes in dairy product manufacture. In Whitehurst R. J., Oort M. (Eds.), Enzymes in Food Technology, 92-93. Wiley-Blackwell, A John Wiley & Sons, Ltd., Publication.Search in Google Scholar

5. Saha, B.A., Ali, M.Y., Chakraborty, M., Islam, Z. & Hira, A.K. (2003). Study on the Preservation of Raw Milk with Hydrogen Peroxide (H2O2) for Rural Dairy Farmers. Pakistan J. Nut., 2(1), 36-42. DOI: 10.3923/pjn.2003.36.42.10.3923/pjn.2003.36.42Open DOISearch in Google Scholar

6. Sooch, B.S., Kauldhar, B.S. & Puri, M. (2017). Catalases. Types, Structure, Applications and Future Outlook. In R.C. Ray, C.M. Rossel (Eds.), Microbial Enzyme Technology in Food Applications, 241-250. Boca Raton, CRC Press.10.1201/9781315368405-15Search in Google Scholar

7. Loncar, N. & Fraaije, MW. (2015). Catalases as biocatalysts in technical applications: current state and perspectives. Appl. Microbiol. Biotechnol. 99(8), 3351-3357. DOI: 10.1007/s00253-015-6512-6.10.1007/s00253-015-6512-625761626Open DOISearch in Google Scholar

8. Choudhury A.K.R. (2014). Sustainable Textile Wet Processing: Applications of Enzymes, in Roadmap to Sustainable Textiles and Clothing. In S.S Muthu (Eds.), Eco-friendly Raw Materials, Technologies and Processing Methods, 217-219. Springer, ISBN 978-981-287-065-0. DOI: 10.1007/978-981-287-065-0.10.1007/978-981-287-065-0Search in Google Scholar

9. Sarmiento, F., Peralta, R. & Blamey J.M. (2015). Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3, 1-15. DOI: 10.3389/fbioe.2015.00148.10.3389/fbioe.2015.00148461182326539430Open DOISearch in Google Scholar

10. Homaei, A.A., Sariri, R., Vianello, F. & Stevanato, R. (2013). Enzyme immobilization: an update. J. Chem. Biol. 6(4), 185-205. DOI: 10.1007/s12154-013-0102-9.10.1007/s12154-013-0102-9378720524432134Search in Google Scholar

11. Dogac, Y.I., Cinar, M. & Teke, M. (2015). Improving of Catalase Stability Properties by Encapsulation in Alginate/ Fe3O4 Magnetic Composite Beads for Enzymatic Removal of H2O2. Prep. Biochem. Biotech. 45(2), 144-157. DOI: 10.1080/10826068.2014.907178.10.1080/10826068.2014.90717824679144Open DOISearch in Google Scholar

12. Rios, G.M., Beelleville, M.P. & Paolucci, D., et al. (2004). Progress in enzymatic membrane reactors - a review. J. Membrane Sci. 242(1-2), 189-196, DOI: https://doi.org/10.1016/j.memsci.2003.06.004.10.1016/j.memsci.2003.06.004Open DOISearch in Google Scholar

13. Franssen, M.C.R., Steunenberg, P., Scott, E.L., et al. (2013). Immobilized enzymes in biorenewables production. Chem. Soc. Rev. 42, 6491-6533. DOI: 10.1039/C3CS00004D.10.1039/C3CS00004Open DOISearch in Google Scholar

14. Murtinho, D., Lagoa, A.R. & Garcia, F.A.P., et al. (1998). Cellulose Derivatives Membranes as Supports for Immobilisation of Enzymes. Cellulose. 5(4), 299-308. DOI: 10.1023/A:1009255126274.10.1023/A:1009255126274Open DOISearch in Google Scholar

15. Lowry, O., Rosebrough, N., Farr, A. & Randall, R., (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-270.10.1016/S0021-9258(19)52451-6Search in Google Scholar

16. Safarik, I., Sabatkova, Z. & Safarikova, M. (2008). Hydrogen Peroxide Removal with Magnetically Responsive Saccharomyces cerevisiae Cells. J. Agric. Food Chem. 56, 7925-7928. DOI: 10.1021/jf801354a.10.1021/jf801354aOpen DOISearch in Google Scholar

17. Farkye, NY. (2004). Cheese technology. Int. J. Dairy Technol. 5791-98.10.1111/j.1471-0307.2004.00146.xSearch in Google Scholar

18. Trusek-Holownia, A. (2003). Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate - water system catalyzed by thermolysin. J. Biotechnol. 102, 153-163. DOI: 10.1016/S0168-1656(03)00024-5.10.1016/S0168-1656(03)00024-5Open DOISearch in Google Scholar

19. Dogac, Y.I. & Teke, M. (2013) Immobilization of bovine catalase onto magnetic nanoparticles. Prepar. Biochem. Biotechnol. 43, 750-765. DOI:10.1080/10826068.2013.773340.10.1080/10826068.2013.77334023876136Open DOISearch in Google Scholar

20. Silva, L.C.C. (2015). Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk. Ciência Rural, 1-13. DOI: 10.1590/0103-8478cr20141013.10.1590/0103-8478cr20141013Open DOISearch in Google Scholar

21. Yildiz, H., Akyilmaz, E. & Dinckaya, E. (2004). Catalase Immobilization in Cellulose Acetate Beads and Determination of its Hydrogen Peroxide Decomposition Level by using a Catalase Biosensor. Artif. Cells Blood Substit. Immobil. Biotechnol. 32(3), 443-452. DOI: 10.1081/BIO-2000277507.10.1081/BIO-2000277507Open DOISearch in Google Scholar

22. Görenek, G., Akyilmaz, E. & Dinckaya, E. (2004). Immobilisation of Catalase by Entrapping in Alginate Beads and Catalase Biosensor Preparation for the Determination of Hydrogen Peroxide Decomposition. Art. Cells, Blood Subst. 32(3), 453-461. DOI: 10.1081/BIO-200027518.10.1081/BIO-200027518Open DOISearch in Google Scholar

23. Trusek-Holownia, A. & Noworyta, A. (2015). Catalase immobilized in capsules in microorganisms removal from drinking water, milk and beverages. Desalin. Water Treat. 55(10), 2721-27727. DOI: 10.1080/19443994.2014.939857.10.1080/19443994.2014.939857Search in Google Scholar

24. Miłek, J., Kwiatkowska-Marks, S. & Wójcik, M. (2011). Immobilization of catalase from Aspergillus niger in calcium alginate gel. Chemik 65(4), 305-308.Search in Google Scholar

25. Al-Mayah, A.M.R. (2012). Simulation of Enzyme Catalysis in Calcium Alginate Beads. Enz. Res. 459190, 1-13. DOI: 10.1155/2012/459190.10.1155/2012/459190Open DOISearch in Google Scholar

26. Noworyta, A. & Trusek-Holownia, A. (2004). Modeling of enzymatic conversion in the catalytic gel layer located on a membrane surface. Desalination 162, 1-3, 327-334. DOI: 10.1016/S0011-9164(04)00066-9.10.1016/S0011-9164(04)00066-9Open DOISearch in Google Scholar

27. Trusek-Holownia, A. & Noworyta, A. (2015). Efficient utilization of hydrogel preparations with encapsulated enzymes- a case study on catalase and hydrogen peroxide degradation. Biotechnol. Reports 6, 13-19.10.1016/j.btre.2014.12.012546625928626692Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering