Cite

1. Jha, S.K., Mishra, V.K., Sharma, D.K. & Damodaran, T. (2011). Fluoride in the environment and its metabolism in humans. Rev. Environ. Contamin. Toxicol. 211,121-142. DOI: 10.1007/978-1-4419-8011-3_4.10.1007/978-1-4419-8011-3_4Open DOISearch in Google Scholar

2. David, L. Ozsvath. (2009). Fluoride and environmental health: a review. Rev. Environ. Sci. Biotechnol. 8,59-79. DOI: 10.1007/s11157-008-9136-9.10.1007/s11157-008-9136-9Open DOISearch in Google Scholar

3. Singh, P.P., Barjatiya, M.K., Dhing, S., Bhatnagar, R., Kothari, S. & Dhar, V. (2001) Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urol. Res. 29, 238-244. DOI: 10.1007/s002400100192.10.1007/s002400100192Open DOISearch in Google Scholar

4. Takahashi, K., Akiniwa, K. & Narita, K. (2001). Regression analysis of cancer incidence rates and water fluoride in the U.S.A. based on IACRIARC (WHO) data (1978-1992). J. Epidemiol. 11,170-179. DOI:10.2188/jea.11.170.10.2188/jea.11.170Open DOISearch in Google Scholar

5. Zhou, Y., Zhang, J.F. & Yoon, J. (2014). Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chem. Rev. 114,5511-5571. DOI: 10.1021/cr400352m.10.1021/cr400352mOpen DOISearch in Google Scholar

6. Hudnall, T.W., Chiu, C.W. & Gabbaï, F.P. (2009). Fluoride ion recognition by chelating and cationic boranes. Acc. Chem. Res. 42,388-97. DOI: 10.1021/ar8001816.10.1021/ar8001816Open DOISearch in Google Scholar

7. Itai, K. & Tsunoda, H. (2001) Highly sensitive and rapid method for determination of fluoride ion concentrations in serum and urine using flow injection analysis with a fluoride ion-selective electrode. Clin. Chim. Acta. 308,163-71.10.1016/S0009-8981(01)00488-0Search in Google Scholar

8. Santos-Figueroa, L.E., Moragues, M.E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem. Soc. Rev. 42,3489-3613. DOI: 10.1039/c3cs35429f.10.1039/c3cs35429fSearch in Google Scholar

9. Zhang, S., Fan, J., Zhang, S., Wang, J., Wang, X., Du, J. & Peng, X. (2014). Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe. Chem. Commun. (Camb). 50,14021-14024. DOI: 10.1039/c4cc05094k.10.1039/c4cc05094kOpen DOISearch in Google Scholar

10. Zhu, B., Kan, H., Liu, J., Liu, H., Wei, Q. & Du, B. (2014). A highly selective ratiometric visual and red-emitting fluorescent dual-channel probe for imaging fluoride anions in living cells. Biosens. Bioelectr. 52,298-303. DOI: 10.1016/j.bios.2013.09.010.10.1016/j.bios.2013.09.010Search in Google Scholar

11. Gabrielli, L. & Mancin, F. (2016). Minimal Self-Immolative Probe for Multimodal Fluoride Detection. J. Org. Chem. 81,10715-10720. DOI: 10.1021/acs.joc.6b01787.10.1021/acs.joc.6b01787Open DOISearch in Google Scholar

12. Goswami, S., Chakraborty, S., Paul, S., Halder, S., Panja, S. & Mukhopadhyay, S.K. (2014). A new pyrene based highly sensitive fluorescence probe for copper(II) and fluoride with living cell application. Org. Biomol. Chem. 12,3037-3044. DOI: 10.1039/c4ob00067f.10.1039/c4ob00067fOpen DOISearch in Google Scholar

13. Turan, I.S. & Akkaya, E.U. (2014). Chemiluminescence sensing of fluoride ions using a self-immolative amplifier. Org Lett. 16,1680-1683. DOI: 10.1021/ol5003412.10.1021/ol5003412Open DOISearch in Google Scholar

14. Zheng, X., Zhu, W., Liu, D., Ai, H., Huang, Y & Lu, Z. (2014). Highly Selective Colorimetric/Fluorometric Dual- Channel Fluoride Ion Probe, and Its Capability of Differentiating Cancer Cells. ACS Appl. Mater. Interfaces 6:7996-8000. DOI: 10.1021/am501546h.10.1021/am501546hOpen DOISearch in Google Scholar

15. Kumari, N., Jha, S. & Bhattacharya, S. (2011). Colorimetric probes based on anthraimidazolediones for selective sensing of fluoride and cyanide ion via intramolecular charge transfer. J. Org. Chem. 76,8215-8222. DOI: 10.1021/jo201290a.10.1021/jo201290aOpen DOISearch in Google Scholar

16. Peng, Y., Dong, Y.M., Dong, M, & Wang, Y.W. (2012). A selective, sensitive, colorimetric, and fluorescence probe for relay recognition of fluoride and Cu(II) ions with “Off−On−Off” switching in ethanol−water solution. J. Org. Chem. 77,9072-9080. DOI: 10.1021/jo301548v.10.1021/jo301548vOpen DOISearch in Google Scholar

17. Kim, T.H. & Swager, T.M . (2003). A Fluorescent Self-Amplifying Wavelength-Responsive Sensory Polymer for Fluoride Ions. Angew. Chem. Int. Ed. 42,4803-4806. DOI: 10.1002/anie.200352075.10.1002/anie.200352075Open DOISearch in Google Scholar

18. Chen, J., Liu, W., Zhou, B., Niu, C., Zhang, H., Wu, J., Wang, Y., Ju, W. & Wang, P. Coumarin-and rhodaminefused deep red fluorescent dyes: synthesis, photophysicalprop erties, and bioimaging in vitro. J. Org. Chem. 78,6121--6130. DOI: 10.1021/jo400783x.10.1021/jo400783xOpen DOISearch in Google Scholar

19. Trenor, S.R., Shultz, A.R., Love B.J. & Long, T.E. (2004). Coumarins in polymers: from light harvesting to photocross- linkable tissue scaffolds. Chem. Rev. 104,3059-77. DOI: 10.1021/cr030037c.10.1021/cr030037cOpen DOISearch in Google Scholar

20. Kang, Y.F., Qiao, H.X., Meng, Y.L., Cui, S.J., Han, Y.J., Wu, Z.Y., Wu, J., Jia, X.H., Zhang, X.L. & Dai, M.Y. (2016). Rapid and selective detection of cysteine over homocysteine and glutathione by a simple and effective coumarin-based fluorescent probe. RSC Adv. 6,94866-94869. DOI: 10.1039/C6RA19267J10.1039/C6RA19267JSearch in Google Scholar

21 Ke, B., Chen, W., Ni, N., Cheng, Y., Dai, C., Dinh, H. & Wang, B. (2013). A fluorescent probe for rapid aqueous fluoride detection and cell imaging. Chem. Commun. 49,2494--2496. DOI: 10.1039/c2cc37270c.10.1039/c2cc37270cOpen DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering