1. bookVolume 20 (2018): Issue 1 (March 2018)
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Titania/mesoporous silica nanotubes with efficient photocatalytic properties

Published Online: 16 Apr 2018
Page range: 103 - 108
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

Ordered nanocrystalline titania-mesoporous silica nanotube structures are synthesized by hydrolysis of the titania precursor inside pours silica shell. Silica coating surrounding carbon nanotubes was further removed by thermal reduction. The proposed method of functionalization silica channels with the titania nanoparticles preclude aggregation of TiO2 nanoparticles. The nanocrystalline silica/titania (mt-SiO2/TiO2) nanotubes were prepared according to the describe method has high specific surface area and possesses excellent photocatalytic properties capable of decomposing phenol and methylene blue in a short time. Since the nanocrystalline TiO2 is produced in the wall of the mesoporous silica tube, phenol or dye molecules can react with TiO2 nanoparticles from both the inside and outside.

Keywords

1. Carp, O., Huisman, C.L. & Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Solid State Chem. 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001.10.1016/j.progsolidstchem.2004.08.001Open DOISearch in Google Scholar

2. Ma, Y. & Yao, J.N. (1998) Photodegradation of Rhodamine B catalyzed by TiO2 thin films. J. Photochem. Photobiol. A 116, 167–170. DOI: 10.1016/S1010-6030(98)00295-0.10.1016/S1010-6030(98)00295-0Open DOISearch in Google Scholar

3. Stylidi, M., Kondarides, D.I. & Verykios, X.E. (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B 40, 271–286. DOI: 10.1016/S0926-3373(02)00163-7.10.1016/S0926-3373(02)00163-7Open DOISearch in Google Scholar

4. Chen, D. & Ray, A.K. (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 56, 1561–1570. DOI: 10.1016/S0009-2509(00)00383-3.10.1016/S0009-2509(00)00383-3Open DOISearch in Google Scholar

5. Khenniche, L., Favier, L., Bouzaza, A., Fourcade, F., Aissani, F. & Amrane, A. (2015) Photocatalytic degradation of bezacryl yellow in batch reactors–feasibility of the combination of photocatalysis and a biological treatment. Environ. Technol. 36(1), 1–10. DOI: 10.1080/09593330.2014.934740.10.1080/09593330.2014.934740Open DOISearch in Google Scholar

6. Favier, L., Ionut Simion, A., Rusu, L., Pacala, M.L., Grigoras, C. & Bouzaza, A. (2015) Removal of an Organic Refractory Compound by Photocatalysis in Batch Reactor-Kinetic Studies. Environ. Eng. Manag. J. 14(6), 1327–1338.10.30638/eemj.2015.144Search in Google Scholar

7. Favier, L., Simion, A.I., Matei, E., Grigoras, C.G., Kadmi, Y. & Bouzaza, A. (2016). Photocatalytic oxidation of a hazardous phenolic compound over TiO2 in a batch system. Environ. Eng. Manag. J. 15, 5, 1059–1067.10.30638/eemj.2016.117Search in Google Scholar

8. Kitano, M., Matsuoka, M., Ueshima, M. & Anpo, M. (2007) Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A. 325, 1–14. DOI: 10.1016/j.apcata.2007.03.013.10.1016/j.apcata.2007.03.013Search in Google Scholar

9. Fujishima, A., Zhang, X.T. & Tryk, D.A. (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582. DOI: 10.1016/j.surfrep.2008.10.001.10.1016/j.surfrep.2008.10.001Open DOISearch in Google Scholar

10. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science. 293, 269–271. DOI: 10.1126/science.1061051.10.1126/science.1061051Search in Google Scholar

11. Cendrowski, K., Chen, X., Zielinska, B., Kalenczuk, R.J., Rümmeli, M.H., Büchner, B.R., Klingeler & Borowiak-Palen, E. (2011) Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania J. Nanopart. Res. 11051/NANO, 307(13), 5899–5908. DOI: 10.1007/s11051-011-0307-1.10.1007/s11051-011-0307-1Open DOISearch in Google Scholar

12. Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95, 69–96. DOI: 10.1021/cr00033a004.10.1021/cr00033a004Open DOISearch in Google Scholar

13. Khan, S.U.M., Al-Shahry, M. & Ingler, W.B. (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science. 297, 2243–2245. DOI: 10.1126/science.1075035.10.1126/.1075035Open DOISearch in Google Scholar

14. Sikora, P., Augustyniak, A., Cendrowski, K., Horszczaruk, E., Rucinska, T., Nawrotek, P. & Mijowska, E. (2016) Characterization of mechanical and bactericidal properties of cement mortars containing waste glass aggregate and nanomaterials. Materials 9, 701, 1–16. DOI: 10.3390/ma9080701.10.3390/9080701Open DOISearch in Google Scholar

15. Vinodgopal, K., Wynkoop, D.E. & Kamat, P.V. (1996) Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ. Sci. Technol. 30(5), 1660–1666. DOI: 10.1021/es950655d.10.1021/es950655dOpen DOISearch in Google Scholar

16. Hu, C., Lan, Y., Qu, J., Hu, X. & Wang, A. (2006) Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria. J. Phys. Chem. B. 110(9), 4066–4072. DOI: 10.1021/jp0564400.10.1021/jp0564400Open DOISearch in Google Scholar

17. Rao, K.V.S., Zhuo, B., Cox, J.M., Chiang, K., Brungs, M. & Amal, R. (2006) Photoinduced Bactericidal Properties of Nanocrystalline TiO2 Thin Films. J. Biomed. Nanotechnol. 2, 71–73. DOI: 10.1166/jbn.2006.006.10.1166/jbn.2006.006Open DOISearch in Google Scholar

18. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A: Chem. 106, 51–56. DOI: 10.1016/S1010-6030(97)00038-5.10.1016/S1010-6030(97)00038-5Open DOISearch in Google Scholar

19. Sunada, K., Kikuchi, Y., Hashimoto, K. & Fujishima, A. (1998) Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environ. Sci. Technol. 32, 726–728. DOI: 10.1021/es970860o.10.1021/es970860oOpen DOISearch in Google Scholar

20. Parkin, I.P. & Palgrave, R.G. (2005) Self-cleaning coatings. J. Mater. Chem. 15, 1689–1695. DOI: 10.1039/B412803F10.1039/B412803Open DOISearch in Google Scholar

21. Fujishima, A., Rao, T.N. & Tryk, D.A. (2001) Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.10.1016/S1389-5567(00)00002-2Open DOISearch in Google Scholar

22. Pitoniak, E., Wu, C.Y., Londeree, D., Mazyck, D., Bonzongo, J.C., Powers, K. & Sigmund, W. (2003) Nanostructured silica-gel doped with TiO2 for mercury vapor control. J. Nanopart. Res. 5, 281–292. DOI: 10.1023/A:1025582731470.10.1023/A:1025582731470Open DOISearch in Google Scholar

23. Wu, C.Y., Lee, T.G., Tyree, G., Arar, E. & Biswas, P. (1998) Capture of Mercury in Combustion Systems by In Situ–Generated Titania Particles with UV Irradiation. Environ. Eng. Sci. 15, 137–148. DOI: 10.1089/ees.1998.15.137.10.1089/ees.1998.15.137Open DOISearch in Google Scholar

24. Li, Y., Murphy, P. & Wu, C.Y. (2008) Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Process. Technol. 89, 567–573. DOI: 10.1016/j.fuproc.2007.10.009.10.1016/j.fuproc.2007.10.009Open DOISearch in Google Scholar

25. Li, Y. & Wu, C.Y. (2007) Kinetic Study for Photocatalytic Oxidation of Elemental Mercury on a SiO2–TiO2 Nanocomposite. Environ. Eng. Sci. 24(1), 3–12. DOI: 10.1089/ees.2007.24.3.10.1089/ees.2007.24.3Open DOISearch in Google Scholar

26. Li, Y. & Wu, C.Y. (2006) Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite. Environ. Sci. Technol. 40(20), 6444–6448. DOI: 10.1021/es061228a.10.1021/es061228aOpen DOISearch in Google Scholar

27. Pitoniak, E., Wu, C.Y., Mazyck, D.W. & Powers, K.W. (2005) Adsorption Enhancement Mechanisms of Silica−Titania Nanocomposites for Elemental Mercury Vapor Removal. Environ. Sci. Technol. 39, 1269–1274. DOI: 10.1021/es049202b.10.1021/es049202bOpen DOISearch in Google Scholar

28. Huma, R.J., Michael, V.L., Li, Q. & Barron, A.R. (2011) Simple Route to Enhanced Photocatalytic Activity of P25 Titanium Dioxide Nanoparticles by Silica Addition. Environ. Sci. Technol. 45(4), 1563–1568. DOI: 10.1021/es102749e.10.1021/es102749eOpen DOISearch in Google Scholar

29. Fox, M.A. & Dulay, M.T. (1993) Heterogeneous photocatalysis. Chem. Rev. 93, 341–357. DOI: 10.1021/cr00017a016.10.1021/cr00017a016Open DOISearch in Google Scholar

30. Augustyniak, A., Cendrowski, K., Nawrotek, P., Barylak, M. & Mijowska. E. (2016) Investigating the interaction between Streptomyces sp. and titania/silica nanospheres. Water, Air, & Soil Pollut. 227, 230, 1–13. DOI: 10.1007/s11270-016-2922-z.10.1007/s11270-016-2922-zOpen DOISearch in Google Scholar

31. Cendrowski, K., Sikora, P., Horszczaruk, E. & Mijowska, E. (2017) Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol-ammonium solution. Chem. Papers 71, 841–848. DOI: 10.1007/s11696-016-0099-y.10.1007/s11696-016-0099-yOpen DOISearch in Google Scholar

32. Cendrowski, K., Sikora, P., Zielinska, B., Horszczaruk, E. & Mijowska, E. (2017) Chemical and thermal stability of the core-shelled magnetite nanoparticles with solid silica. Appl. Surf. Sci. 407, 391–397. DOI: 10.1016/j.apsusc.2017.02.118.10.1016/j.apsusc.2017.02.118Open DOISearch in Google Scholar

33. Sikora, P., Cendrowski, K., Markowska-Szczupak, A., Horszczaruk, E. & Mijowska, E. (2017) The effects of silica/ titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Constr. Build. Mater. 150, 738–746. DOI: 10.1016/j.conbuildmat.2017.06.054.10.1016/j.conbuildmat.2017.06.054Open DOISearch in Google Scholar

34. Machinda, M., Norimoto, W.K. & Kimura, T. (2005) Antibacterial Activity of Photocatalytic Titanium Dioxide Thin Films with Photodeposited Silver on the Surface of Sanitary Ware. J. Am. Ceram. Soc. 88(1), 95–100. DOI: 10.1111/j.1551-2916.2004.00006.x.10.1111/j.1551-2916.2004.00006.xOpen DOISearch in Google Scholar

35. Paulo, S.O.C., Vidal, M. & Ferreir, L.S. (2010) Antifungal Nanoparticles and Surfaces. Biomacromolecules 11, 2810–2817. DOI: 10.1021/bm100893r.10.1021/bm100893rOpen DOISearch in Google Scholar

38. Li, M., Hong, Z., Fang, Y. & Huang, F. (2008) Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide. Mater. Res. Bull. 43, 2179–2186. DOI: 10.1016/j.materresbull.2007.08.030.10.1016/j.materresbull.2007.08.030Open DOISearch in Google Scholar

39. Cendrowski, K., Peruzynska, M., Markowska-Szczupak, A., Chen, X., Wajda, A., Lapczuk, J., Kurzawski, M., Kalenczuk, R.J., Drozdzik, M. & Mijowska, E. (2014) Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomed Microdevices. 16 (3), 449–458. DOI: 10.1007/s10544-014-9847-3.10.1007/s10544-014-9847-3Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo