Open Access

Mathematical modeling of large floating roof reservoir temperature arena


Cite

1. Wei, S. & Qinglin, C. et al. (2016). Research on the variation law of heating temperature field and the effective energy utilization rate of a steam coil for the floating roof tank. Numerical Heat Trans. 70, 1345–1355.10.1080/10407782.2016.1243936Search in Google Scholar

2. Nurten, V. (2003). Numerical analysis of the transient turbulent flow in a fuel oil storage tank. Int. J. Therm. Sci. 46, 3429–3440. DOI: 10.1016/S0017-9310(03)00145-5.10.1016/S0017-9310(03)00145-5Open DOISearch in Google Scholar

3. Wang, M., Zhang, X. & Yu, G. et al. (2017). Numerical study on the temperature drop characteristics of waxy crude oil in a double-plate floating roof oil tank. Appl. Therm. Enginee. 124, 560–570.10.1016/j.applthermaleng.2017.05.203Search in Google Scholar

4. Oliveski, R.D.C., Macagnan, M.H., Copetti, J.B. & Petroll, A.D.L. (2005). Natural convection in a tank of oil: experimental validation of a numerical code with prescribed boundary condition. Exp. Therm. Fluid Sci. 29, 671–680. DOI: 10.1016/j.expthermflusci.2004.10.003.10.1016/j.expthermflusci.2004.10.003Open DOISearch in Google Scholar

5. Oliveski, R.D.C., Krenzinger, A. & Vielmo, H.A. (2001). Experimental and numerical analysis of a thermal storage tank. Exp. Therm. Fluid Sci. 3, 2193–2198. DOI: 10.1002/er.1057.10.1002/er.1057Open DOISearch in Google Scholar

6. Oliveski, R.D.C., Krenzinger, A. & Vielmo, H.A. (2003). Cooling of cylindrical vertical tanks submitted to natural internal convection. Int. J. Therm. Sci. 46, 2015–2026. DOI: 10.1016/S0017-9310(02)00508-2.10.1016/S0017-9310(02)00508-2Open DOISearch in Google Scholar

7. Rejane De Cesaro Oliveski. (2013). Correlation for the cooling process of vertical storage tanks under natural convection for high Prandtl number. Int. J. Heat Mass Trans. 57, 292–298.10.1016/j.ijheatmasstransfer.2012.10.038Open DOISearch in Google Scholar

8. Lin, W.X. & Armfield, S.W. (1999). Direct simulation of natural convection cooling in a vertical circular cylinder. Int. J. Therm. Sci. 42, 4117–4130. DOI: 10.1016/S0017-9310(99)00074-5.10.1016/S0017-9310(99)00074-5Search in Google Scholar

9. Atmane, M.A., Chan, V.S.S. & Murray, D.B. (2003). Natural convection around a horizontal heated cylinder: the effects of vertical confinement. Int. J. Heat Mass Trans. 46, 3661–3672. DOI: 10.1016/S0017-9310(03)00154-6.10.1016/S0017-9310(03)00154-6Open DOISearch in Google Scholar

10. Sanapala, V.S., Velusamy, K. & Patnaik, B.S.V. (2016). CFD simulations on the dynamics of liquid sloshing and its control in a storage tank for spent fuel applications. Ann. Nuc. Energy 94, 494–509.10.1016/j.anucene.2016.04.018Search in Google Scholar

11. Oliveira, P.J.R. & Issa, R.I. (2001). An improved PISO algorithem for the computation of buoyant driven flows. Num. Heat Trans. B-Fund. 40, 473–493.10.1080/104077901753306601Search in Google Scholar

12. González, I., Pérez-Segarra, C.D., Lehmkuhl, O., Torras, S. & Oliva, A. (2016). Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks. Appl. Energy 179, 1106–1122.10.1016/j.apenergy.2016.06.124Search in Google Scholar

13. Rodriguez, I., Castro, J., Perez-Segarra, C.D. & Oliva, A. (2009). Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection. Int. J. Therm. Sci. 48, 708–721. DOI: 10.1016/j.ijthermalsci.2008.06.002.10.1016/j.ijthermalsci.2008.06.002Open DOISearch in Google Scholar

14. Fernandez-Seara, J., Francisco, U., Dopazo, J. & Alberto, J. (2011). Experimental transient natural convection heat transfer from a vertical cylindrical tank. Appl. Therm. Eng. 31, 1915–1922. DOI: 10.1016/j.applthermaleng.2011.02.037.10.1016/j.applthermaleng.2011.02.037Open DOISearch in Google Scholar

15. Stig, G. & Jensen, A. (2012). Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers. Int. J. Heat Mass Trans. 55, 5552–5564. DOI: 10.1016/j.ijheatmasstransfer.2012.05.033.10.1016/j.ijheatmasstransfer.2012.05.033Open DOISearch in Google Scholar

16. Stig, G., Atle, J.B. & Anders, P.R. (2011). PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder. Int. J. Heat Mass Trans. 54, 4975–4987. DOI: 10.1016/j.ijheatmasstransfer.2011.07.011.10.1016/j.ijheatmasstransfer.2011.07.011Open DOISearch in Google Scholar

17. Reymond, O., Murray, D.B. & O’Donovan, T.S. (2008). Natural convection heat transfer from two horizontal cylinders. Exp. Therm. Fluid Sci. 32, 1702–1709. DOI: 10.1007/978-3-319-08132-8_2.10.1007/978-3-319-08132-8_2Open DOISearch in Google Scholar

18. Persoons, T., O’Gorman, I.M., Donoghue, D.B., Byrne, G. & Murray, D.B. (2011). Natural convection heat transfer and fluid dynamics for a pair of vertically alifned isothermal horizontal cylinders. Int. J. Therm. Sci. 54, 5163–5172. DOI: 10.1016/j.ijheatmasstransfer.2011.08.033.10.1016/j.ijheatmasstransfer.2011.08.033Open DOISearch in Google Scholar

19. Mawire, A. (2013). Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging. Appl. Energy 108, 459–465.10.1016/j.apenergy.2013.03.061Search in Google Scholar

20. Yu, D. (2005). Development on temperature monitoring system of large floating roof tank. Oil Gas Stor. Transport 24, 41–43.Search in Google Scholar

21. Yu, D. & Fang, X.Y. (2003). Temperature drop characteristics of oil in the large breathing roof tank. Oil Gas Stor. Transport 22, 47–49.Search in Google Scholar

22. Li, W., Wang, Q., Li, R., Li, C., Yu, B., Zhang, J. & Dai, P. (2011). Numerical study on temperature field of a large floating roof oil tank. J. Chem. Indus. Eng. 62, 108–112.Search in Google Scholar

23. Chouikh, R., Guizani, A., Cafsi, A. El, Maalej, M. & Belghith, A. (2000). Experimental study of the natural convection flow around an array of heated horizontal cylinders. Renew. Energ. 21, 65–78. DOI: 10.1016/S0960-1481(99)00120-2.10.1016/S0960-1481(99)00120-2Open DOISearch in Google Scholar

24. Bin Zhao, (2012). Numerical simulation for the temperature changing rule of the crude oil in a storage tank based on the wavelet finite element method. J. Therm. Anal. Calorim. 107, 3, 87–393.10.1007/s10973-011-1469-xSearch in Google Scholar

25. Tao, W. (2001). Numerical heat transfer. Xi ‘an: Xi ‘an Jiaotong University Press.Search in Google Scholar

26. Jian, Z., Dong, H., Wei, L.X. & Liu, Y. (2015). Heat Loss Test and Estimate for the Large-scale Floating Roof Tank. Open Petrol. Eng. J. 8, 117–125. DOI: 10.2174/1874834101508010117.10.2174/1874834101508010117Search in Google Scholar

27. Suhas, P. (1980). Numerical Heat Transfer and Fluid Flow. Boca Raton: CRC Press.Search in Google Scholar

28. Versteeg, H.K. & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. (2nd ed). New York: Pearson.Search in Google Scholar

29. Jian Z., Liu, Y., Wei, L.X. & Dong, H. (2014). Transient Cooling of Waxy Crude Oil in a Floating Roof Tank. J. Appl. Mat. 2014, 1–12. DOI: 10.1155/2014/482026.10.1155/2014/482026Open DOISearch in Google Scholar

30. Cheng, Q.L., Sun, W., Shao, S., Li, Z. & Yi, X. (2014). The study of variation law and influence factors of heat transfer coefficient for floating roof storage tank. Energ. Conserv. Technol. 32, 151–154.Search in Google Scholar

31. Fan, J.W. & Liu-et, Y. al. (2017). Hydrodynamics of residual oil droplet displaced by polymer solution in microchannels of lipophilic rocks. Int. J. Heat Technol. 35, 611–618.10.18280/ijht.350318Search in Google Scholar

32. Rahimi, M. & Parvareh, A. (2007). CFD study on mixing by coupled jet-impeller mixers in a large crude oil storage tank. Compu. & Chem. Enginee. 31, 737–744.10.1016/j.compchemeng.2006.07.009Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering