Open Access

Composite coatings with nickel matrix and graphene as dispersed phase


Cite

1. Łosiewicz, B. (2015). The role of Ni(II) ion adsorption onto TiO2 in the electrodeposition of composite Ni-P+TiO2 coatings. Solid State Phenomena. 228, 89–100. DOI: 10.4028/www.scientific.net/SSP.228.8910.4028/www.scientific.net/SSP.228.89Open DOISearch in Google Scholar

2. Szeptycka, B. & Gajewska, A. (2003). The structural and tribological properties of nanocrystalline electrochemical coatings with nickel matrix. Solid State Phenomena 94, 245–248.10.4028/www.scientific.net/SSP.94.245Open DOISearch in Google Scholar

3. Szeptycka, B. & Gajewska-Midziałek, A., (2005). Investigations of the wear resistance of composite coatings Ni-SiC. Kompozyty 5, 2–7.Search in Google Scholar

4. Gajewska-Midziałek, A., Szeptycka, B., Derewnicka, D. & Nakonieczny, A. (2006). Wear resistance of nanocrystalline composite coatings. Tribology Int. 39(8), 763–768. DOI: 10.1016/j.triboint.2005.07.005.10.1016/j.triboint.2005.07.005Search in Google Scholar

5. Szeptycka, B., (2010). The nano – structured Ni-SiC coatings and their tribological properties. Engineering & Automation Problems. 2, 117–120.Search in Google Scholar

6. Benea., L., Bonora, A., Borello, A. & Martelli, S. (2002). Effect of SiC size dimensions on the corrosion wear resistance of the electrodeposited composite coating. Mat. Corr. 53, 23–29.10.1002/1521-4176(200201)53:1<23::AID-MACO23>3.0.CO;2-0Search in Google Scholar

7. Malfatti, C.F., Ferreira, J. Z., Santos, C.B., Souza, B.V., Fallavena, E.P., Vaillant, S. & Bonino, J.P. (2005). NiP/SiC composite coatings: the effects of particles on the electrochemical behavior. Corr. Sci. 47, 567–580. DOI: 10.1016/j.corsci.2004.07.011.10.1016/j.corsci.2004.07.011Open DOISearch in Google Scholar

8. Gladkovas, M., Medeliene, V., Samuleviciene, M. & Juzeliunas E. (2002). Corrosion study of electroplated nickel-matrix composites with B4C, Al2O3 and SiC. Chemija 13(1), 36–40.Search in Google Scholar

9. Szczygieł, B. & Kołodziej, M. (2005). Corrosion resistance of Ni/Al2O3 coatings in NaCl solution. Trans. Inst. Metal Finish 83(4), 181–187. DOI: org/10.1179/002029605X6165810.1179/002029605X61658Open DOISearch in Google Scholar

10. Wan, X., Xu, Y., Guo, H., Shehzad, K., Ali, A., Liu, Y., Yang, J., Dai, D., Lin, C.-T., Liu, L., Cheng, H.-C., Wang, F., Wang, X., Lu, H., Hu, W., Pi, X., Dan, Y., Luo, J., Hasan, T., Duan, X., Li, X., Xu, J., Yang, D., Ren, T. & Yu, B. (2017). A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? Nat. Part. J. 2D Mater Appl. 4, 1–8. DOI:10.1038/s41699-017-0008-4.10.1038/s41699-017-0008-4Search in Google Scholar

11. Xu, Y., Ali, A., Shehzad, K., Meng, N., Xu, M.S., Zhang, Y.H., Wang, X. R., Jin, C. H., Wang, H.T., Guo, Y.Z., Yang, Z.Y., Yu, B., Liu, Y., He, Q.Y., Duan, X.F., Wang, X.M., Tan, P.H., Hu, W.D., Lu, H. & Hasan, T. (2017). Solvent-based soft-patterning of graphene lateral heterostructures for broadband high-speed metal-semiconductor-metal photodetectors. Adv. Mater. Technol. 2(2), 1600241.10.1002/admt.201600241Search in Google Scholar

12. Du, S., Lu, W., Ali, A., Zhao, Z., Shehzad, K., Guo, H., Ma, L., Liu, X., Pi, X., Wang, P., Fang, H., Xu, Z., Gao, Ch., Dan, Y., Tan, P., Wang, H., Lin, Ch-T., Yang, J., Dong, S., Cheng, Z., Li, E., Yin, W., Luo, J., Yu, B., Hasan, T., Xu, Y., Hu, W. & Duan, X. (2017). A broadband fluorographene photodetector. Adv. Mater. 29, 1–8. DOI: 10.1002/adma.20170046310.1002/adma.201700463Open DOISearch in Google Scholar

13. Shehzad, K., Shi, T., Qadir, A., Wan, X., Guo, H., Ali, A., Xuan, W., Xu, H., Gu, Z., Peng, X., Xie, J., Sun, L., He, Q., Xu, Z., Gao, C., Rim, Y.-S., Dan, Y., Hasan, T., Tan, P., Li, E., Yin, W., Cheng, Z., Yu, B., Xu, Y., Luo, J. & Duan, X. (2017). Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262. DOI: 10.1002/admt.201600262.10.1002/admt.201600262Search in Google Scholar

14. Wang, D., Yan, W., Vijapur, S.H. & Botte, G.G. (2013). Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis. Electrochim. Acta 89, 732–736. DOI: 10.1016/j.electacta.2012.11.046.10.1016/j.electacta.2012.11.046Open DOISearch in Google Scholar

15. Kuang, D., Xu, L., Liu, L., Hu, W. & Wu, Y. (2013). Graphene–nickel composites. Appl. Surf. Sci. 273, 484–490. DOI: 10.1016/j.apsusc.2013.02.066.10.1016/j.apsusc.2013.02.066Open DOISearch in Google Scholar

16. Kumar, C.M.P., Venkatesha, T.V. & Shabadi, R. (2013). Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater. Res. Bull. 48, 1477–1483. DOI: 10.1016/j.materresbull.2012.12.064.10.1016/j.materresbull.2012.12.064Open DOISearch in Google Scholar

17. Jiang, K., Li, J. & Liu, J. (2014). Electrochemical codeposition of graphene platelets and nickel for improved corrosion resistant properties. RSC Adv. 4, 36245–36252.10.1039/C4RA06043ASearch in Google Scholar

18. Ren, Z., Meng, N., Shehzad, K., Xu, Y., Qu, S., Yu, B. & Luo, J.K. (2015). Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition. Nanotechnology. 26(6), 065706.10.1088/0957-4484/26/6/06570625605375Search in Google Scholar

19. Jabbar, A., Yasin, G., Khan, W.Q., Anwar, M.Y., Korai, R.M., Nizam, M.N. & Muhyodin, G. (2017). Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. Royal Soc. Chem. Adv. 7, 31100–31109. DOI: 10.1039/c6ra28755g.10.1039/C6RA28755GOpen DOISearch in Google Scholar

20. Huang, X., Qi, X., Boey, F. & Zhang, H. (2012). Graphene- based composites. Chem. Soc. Rev. 41, 666–686. DOI: 10.1039/c1cs15078b.10.1039/C1CS15078BOpen DOISearch in Google Scholar

21. Woźniak, J.T., Trzaska, M., Cieślak, G., Cygan, T., Kostecki, M. & Olszyna, A. (2016). Preparation and mechanical properties of alumina composites reinforced with nickel-coated graphene. Ceramics Int. 42, 8597–8603. DOI: 10.1016/j.ceramint.2016.02.089.10.1016/j.ceramint.2016.02.089Open DOISearch in Google Scholar

22. Grodecki, K. (2013). Spektroskopia ramanowska grafenu. Mater. Elektron. 41(1), 47–53.Search in Google Scholar

23. Ferrari, A., (2007), Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57.DOI: 10.1016/j.ssc.2007.03.052.10.1016/j.ssc.2007.03.052Open DOISearch in Google Scholar

24. Szeptycka, B. (2009). Naprężenia własne galwanicznych powłok niklowych. Część 2. Wpływ cząstek dyspersyjnych i związków organicznych na naprężenia własne kompozytowych powłok niklowych. The internal stresses of the galvanic nickel coatings. Part 2. Influence of the dispersion particles and the organic compounds on the internal stresses of the composite nickel coatings. Inż.Powierzchni 1, 46–53.Search in Google Scholar

25. Low, C.T.J., Wills, R.G.A. & Walsh, F.C. (2006). Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf. Coat. Technol. 201, 371–383. DOI: 10.1016/j.surfcoat.2005.11.123.10.1016/j.surfcoat.2005.11.123Open DOISearch in Google Scholar

26. Guo, Ch., Zuo, Y., Zhao, X., Zhao, J. & Xiong, J. (2008). Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surf. Coat. Technol. 202, 3385–3390. DOI: 10.1016/j.surfcoat.2007.12.005.10.1016/j.surfcoat.2007.12.005Open DOISearch in Google Scholar

27. Gul, H., Kilic, F., Aslan, S., Alp, A. & Akbulut, H. (2009). Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear 267, 976–990. DOI: 10.1016/j.wear.2008.12.022.10.1016/j.wear.2008.12.022Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering