Open Access

Ultrasound-assisted emulsification–microextraction and spectrophotometric determination of cobalt, nickel and copper after optimization based on Box-Behnken design and chemometrics methods


Cite

1. Hedberg, Y., Herting, G. & Wallinder, I.O. (2011). Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media – A study on zinc, copper and nickel. Environ. Pollut. 159(5), 1144–1150. DOI: 10.1016/j.envpol.2011.02.014.10.1016/j.envpol.2011.02.01421367497Open DOISearch in Google Scholar

2. Şengil, I.A. & Özacar, M. (2008). Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel. J. Hazard. Mater. 157(2–3), 277–285. DOI: 10.1016/j.jhazmat.2007.12.115.10.1016/j.jhazmat.2007.12.11518289780Open DOISearch in Google Scholar

3. Regueiroa, J., Lomparta, M., Garcia-Jaresa, C., Garcia-Monteagudob, J.C. & Celaa, R. (2008). Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. J. Chromatogr. A 1190(1–2), 27–38. DOI: 10.1016/j.chroma.2008.02.091.10.1016/j.chroma.2008.02.09118359033Open DOISearch in Google Scholar

4. Feng, J., Qiu, H., Liu, X. & Jiang, Sh. (2013). The development of solid-phase microextraction fibers with metal wires as supporting substrates. TrAC, Trends Anal. Chem. 46, 44–58. DOI: 10.1016/j.trac.2013.01.015.10.1016/j.trac.2013.01.015Open DOISearch in Google Scholar

5. Su, Sh., Chen, B., He, M. & Hu, B. (2014). Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123, 1–9. DOI: 10.1016/j.talanta.2014.01.061.10.1016/j.talanta.2014.01.06124725857Open DOISearch in Google Scholar

6. Miró, M. & Hansen, E.H. (2013). On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: A review. Anal. Chim. Acta 782, 1–11. DOI: 10.1016/j.aca.2013.03.019.10.1016/j.aca.2013.03.01923708278Open DOISearch in Google Scholar

7. Sereshti, H., Khojeh, V. & Samadi, S. (2011). Optimization of dispersive liquid–liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters. Talanta 83(3), 885–890. DOI: 10.1016/j.talanta.2010.10.052.10.1016/j.talanta.2010.10.05221147333Open DOISearch in Google Scholar

8. Mirzaei, M., Behzadi, M., Mahmoud Abadi, N. & Beizaei, A. (2011). Simultaneous separation/preconcentration of ultra-trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater. 186(2–3), 1739–1743. DOI: 10.1016/j.jhazmat.2010.12.080,10.1016/j.jhazmat.2010.12.08021232852Search in Google Scholar

9. Stanisz, E., Werner, J. & Zgoła-Grześkowia, A. (2014). Liquid-phase microextraction techniques based on ionic liquids for preconcentration and determination of metals. TrAC, Trends Anal. Chem. 61, 54–66. DOI: 10.1016/j.trac.2014.06.008.10.1016/j.trac.2014.06.008Open DOISearch in Google Scholar

10. Deng, Q., Chen, M., Kong, L., Zhao, X., Guo, J. & Wen, X. (2013). Novel coupling of surfactant assisted emulsification dispersive liquid–liquid microextraction with spectrophotometric determination for ultra-trace nickel. Spectrochim. Acta, Part A 104, 64–69. DOI: 10.1016/j.saa.2012.10.080.10.1016/j.saa.2012.10.08023266677Search in Google Scholar

11. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. & Berijani, S., (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 1116(1–2), 1–9. DOI: 10.1016/j.chroma.2006.03.007.10.1016/j.chroma.2006.03.007Open DOISearch in Google Scholar

12. Takagai, Y., Akiyama R. & Igarashi, S. (2006). Powerful preconcentration method for capillary electrophoresis and its application to ultra-trace amounts of polycyclic aromatic hydrocarbons analyses. Anal. Bioanal. Chem. 385(5), 888–894. DOI: 10.1007/s00216-006-0447-9.10.1007/s00216-006-0447-9Open DOISearch in Google Scholar

13. Andruch, V., Balogh, I.S., Burdel, M., Kocúrová, L. & Šandrejová, J. (2013). Application of ultrasonic irradiation and vortex agitation in solvent microextraction. TrAC, Trends Anal. Chem. 49, 1–19. DOI: org/10.1016/j.trac.2013.02.006.10.1016/j.trac.2013.02.006Open DOISearch in Google Scholar

14. Jiang, H., Qin, Y. & Hu, B. (2008). Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74(5), 1160–1165. DOI: 10.1016/j.talanta.2007.08.022.10.1016/j.talanta.2007.08.022Open DOISearch in Google Scholar

15. Anthemidis, A.N. & Ioannou, K.I.G. (2011). Sequential injection dispersive liquid–liquid microextraction based on fatty alcohols and poly(etheretherketone)-turnings for metal determination by flame atomic absorption spectrometry. Talanta 84, 1215–1220. DOI: 10.1016/j.talanta.2010.12.017.10.1016/j.talanta.2010.12.017Open DOISearch in Google Scholar

16. Sereshti, H., Entezari Heravi, Y. & Samadi, S. (2012). Optimized Ultrasound-Assisted Emulsification Microextraction for Simultaneous Trace Multielement Determination of Heavy Metals in Real Water Samples by ICP-OES. Talanta 97, 235–241. DOI: org/10.1016/j.talanta.2012.04.024.10.1016/j.talanta.2012.04.024Open DOISearch in Google Scholar

17. Oliveira, E.P., Yang, L., Sturgeon, R.E., Santelli, R.E., Bezerra, M.A., Willie, S.N. & Capilla, R. (2011). Determination of trace metals in high-salinity petroleum produced formation water by inductively coupled plasma mass spectrometry following on-line analyte separation/preconcentration. J. Anal. At. Spectrom. 26(3), 578–585. DOI: 10.1039/c0ja00108b.10.1039/c0ja00108bOpen DOISearch in Google Scholar

18. Karim-Nezhad, G., Saghatforoush L. & Ershad, S. (2009). Simultaneous Determination of Copper and Iron in Biological Samples with 1-(2-Pyridylazo)-2-naphthol in Anionic AOT Micellar Solution Using Derivative Spectrophotometry. Asian J. Chem. 21(2), 2565–2572.Search in Google Scholar

19. Niazi, A. & Yazdanipour, A. (2008). Simultaneous spectrophotometric determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol by chemometrics methods. Chin. Chem. Lett. 19(7), 860–864. DOI: 10.1016/j.cclet.2008.04.047.10.1016/j.cclet.2008.04.047Open DOISearch in Google Scholar

20. Saavedra, R., Soto, C., Gómez, R. & Muñoz, A. (2013). Determination of lead(II) by thermal lens spectroscopy (TLS) using 2-(2′-thiazolylazo)-p-cresol (TAC) as chromophore reagent. Microchem. J. 110, 308–313. DOI: 10.1016/j.microc.2013.04.019.10.1016/j.microc.2013.04.019Open DOISearch in Google Scholar

21. Niazi, A. & Azizi, A. (2008). Orthogonal Signal Correction – Partial Least Squares Method for Simultaneous Spectrophotometric Determination of Nickel, Cobalt, and Zinc. Turk. J. Chem. 32, 217–228.Search in Google Scholar

22. Hejazi, L., Mohammadi, D.E., Yamini, Y. & Brereton, R.G. (2004). Solid-phase extraction and simultaneous spectrophotometric determination of trace amounts of Co, Ni and Cu using partial least squares regression. Talanta 62(1), 185–191 DOI: 10.1016/S0039-9140(03)00412-0.10.1016/S0039-9140(03)00412-0Open DOISearch in Google Scholar

23. Niazi, A., Azizi A. & Ramezani, M. (2008). Simultaneous spectrophotometric determination of mercury and palladium with Thio-Michler’s Ketone using partial least squares regression and orthogonal signal correction. Spectrochim. Acta, Part A 71 (3), 1172–1177. DOI: 10.1016/j.saa.2008.03.017.10.1016/j.saa.2008.03.017Open DOISearch in Google Scholar

24. Niazi, A. (2006). Simultaneous Determination of Uranium and Thorium Using Partial Least Squares Regression and Orthogonal Signal Correction. J. Braz. Chem. Soc. 17, 1020–1026. DOI: org/10.1590/S0103-50532006000500029.10.1590/S0103-50532006000500029Open DOISearch in Google Scholar

25. Tarighat, M.A. & Afkhami, A. (2012). Spectrophotometric Determination of Cu(II), Co(II) and Ni(II) using Ratio Spectra Continuous Wavelet Transformation in some Food and Environmental Samples. J. Braz. Chem. Soc. 23, 1312–1319. DOI: org/10.1590/S0103-50532012000700016.10.1590/S0103-50532012000700016Open DOISearch in Google Scholar

26. Leardi, R. (2001). Genetic algorithms in chemometrics and chemistry: a review. J. Chemom. 15, 559–569. DOI: 10.1002/cem.651.10.1002/cem.651Open DOISearch in Google Scholar

27. Ghasemi, J., Niazi A. & Leardi, R. (2003). Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: application on copper and zinc mixture. Talanta 59(2), 311–317. DOI:10.1016/S0039-9140(02)00505-2.10.1016/S0039-9140(02)00505-2Open DOISearch in Google Scholar

28. Niazi, A., Soufi, A. & Mobarakabadi, M. (2006). Genetic Algorithm Applied to Selection of Wavelength in Partial Least Squares for Simultaneous Spectrophotometric Determination of Nitrophenol Isomers. Anal. Lett. 39(11), 2359–2372. DOI: 10.1080/00032710600751016.10.1080/00032710600751016Open DOISearch in Google Scholar

29. Ghasemi, J., Ebrahimi, D.M., Hejazi, L., Leardi R. & Niazi, A. (2007). Simultaneous kinetic-spectrophotometric determination of sulfide and sulfite by partial least squares and genetic algorithm variable selection. J. Anal. Chem. 62 (4), 348–354. DOI: 10.1134/S1061934807040090.10.1134/S1061934807040090Open DOISearch in Google Scholar

30. Niazi, A. & Leardi, R. (2012). Genetic algorithms in chemometrics. J. Chemom. 26(6), 345–351. DOI: 10.1002/cem.2426.10.1002/cem.2426Open DOISearch in Google Scholar

31. Karbakhsh, R. & Sabet, R. (2011). Application of different chemometric tools in QSAR study of azoloadamantanes against influenza A virus. Res. Pharm. Sci. 6(1), 23–33.Search in Google Scholar

32. Lurie, J.J. (1978). Handbook of Analytical Chemistry. Moscow: Mir Publishers.Search in Google Scholar

33. Niazi, A., Khorshidi N. & Ghaemmaghami, P. (2015). Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box–Behnken design and chemometrics methods. Spectrochim. Acta, Part A 135, 69–75. DOI: 0.1016/j.saa.2014.06.148.10.1016/j.saa.2014.06.14825062051Search in Google Scholar

34. Box, E.P. & Behnken, D. W. (1960). Some new three-level designs for the study of quantitative variables. Technometrics 2, 455–475.10.1080/00401706.1960.10489912Search in Google Scholar

35. Chopra, S., Patil, G.V. & Motwani, S.K. (2007). Release modulating hydrophilic matrix systems of losartan potassium: optimization of formulation using statistical experimental design. Eur. J. Pharm. Biopharm. 66(1), 73–82. DOI: 10.1016/j.ejpb.2006.09.001.10.1016/j.ejpb.2006.09.001Open DOISearch in Google Scholar

36. Yetilmezsoy, K., Demirel, S. & Vanderbei, R.J. (2009). Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 171(1–3), 551–562. DOI: 10.1016/j.jhazmat.2009.06.035.10.1016/j.jhazmat.2009.06.035Open DOISearch in Google Scholar

37. Shokoufi, N., Shemirani, F. & Assadi, Y. (2007). Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal. Chim. Acta 597(2), 349–356. DOI: 10.1016/j.aca.2007.07.009.10.1016/j.aca.2007.07.009Open DOISearch in Google Scholar

38. Jaggi, S. & Gupta, U. (2013). Solid phase extraction and preconcentration of Ni(II) using 1-(2-pyridylazo)-2-naphthol) (PAN) modified β-cyclodextrin butanediol diglycidyl ether polymer as a solid phase extractant. Maced. J. Chem. Chem. En. 32(1), 57–67.10.20450/mjcce.2013.86Search in Google Scholar

39. Gharehbaghi, M., Shemirani, F. & Baghdadi, M. (2008). Dispersive liquid–liquid microextraction and spectrophotometric determination of cobalt in water samples. Int. J. Environ. Anal. Chem. 88, 513–523. DOI: 10.1080/03067310701809128.10.1080/03067310701809128Open DOISearch in Google Scholar

40. Shokoufi, N., Shemirani, F. & Memarzadeh, F. (2007). Fiber optic-linear array detection spectrophotometry in combination with cloud point extraction for simultaneous preconcentration and determination of cobalt and nickel. Anal. Chim. Acta 601(2), 204–211. DOI: 10.1016/j.aca.2007.08.042.10.1016/j.aca.2007.08.042Open DOISearch in Google Scholar

41. Wold, S., Antii, H., Lindgren, F. & Ohman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 44, 175–185.10.1016/S0169-7439(98)00109-9Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering