Cite

Fig. 1:

Comparative estimation of cycle time according to equipment’s engine power for equipment manufacturers’ manuals. (Source: Own study).
Comparative estimation of cycle time according to equipment’s engine power for equipment manufacturers’ manuals. (Source: Own study).

Fig. 2:

Values specification for productivity factors’ coefficients (Vtruck, truck volume; Vexc, excavator bucket volume; hexc, excavation depth; hmax, maximum excavation depth). (a) Swing angle coefficient. (b) Digging depth coefficient for different DIN 18300 categories (3&4: soft soil, 5&6: hard soil). (c) Excavator – truck volume match factor coefficient. (d) Swing – depth coefficient for different swing angles. (Source: Own study).
Values specification for productivity factors’ coefficients (Vtruck, truck volume; Vexc, excavator bucket volume; hexc, excavation depth; hmax, maximum excavation depth). (a) Swing angle coefficient. (b) Digging depth coefficient for different DIN 18300 categories (3&4: soft soil, 5&6: hard soil). (c) Excavator – truck volume match factor coefficient. (d) Swing – depth coefficient for different swing angles. (Source: Own study).

Fig. 3:

Variation of excavator productivity in relation to equipment type. (Source: Own study).
Variation of excavator productivity in relation to equipment type. (Source: Own study).

Fig. 4:

Productivity estimation results for combinatory operation of excavator and loader - truck system. (Source: Own study).
Productivity estimation results for combinatory operation of excavator and loader - truck system. (Source: Own study).

Fig. 5:

Productivity estimation results for combinatory operation of excavator and loader - truck system. (Source: Own study).
Productivity estimation results for combinatory operation of excavator and loader - truck system. (Source: Own study).

Fig. 6:

Graphical illustration of productivity variation for CAT 345B excavator based on swing angle. (Source: Own study).
Graphical illustration of productivity variation for CAT 345B excavator based on swing angle. (Source: Own study).

Fig. 7:

Graphical illustration of productivity variation for CAT 345B excavator based on excavation depth. (Source: Own study).
Graphical illustration of productivity variation for CAT 345B excavator based on excavation depth. (Source: Own study).

Productivity variation for CAT 345B excavator based on excavation depth.

Productivity results (m3/h) and variations depending on the excavation depth
3 m 2 m Percentage of variation 4 m Percentage of variation 5 m Percentage of variation
Komatsu (2013) 573.23 677.45 18.18% 573.23 0.00% 573.23 0.00%
Caterpillar (2016) 523.06 550.59 5.26% 498.15 –4.76% 475.51 –9.09%
Liebherr (2003) 540.02 540.02 0.00% 540.02 0.00% 540.02 0.00%
Volvo (2015) 608.00 608.00 0.00% 608.00 0.00% 608.00 0.00%
Nunnally (2007) 498.15 512.38 2.86% 464.94 –6.67% 445.96 –10.48%
Peurifoy and Schexnayder (2002) 383.58 361.78 –5.68% 353.06 –7.95% 326.91 –14.77%
BML (1983) and Hoffmann (2006) 438.60 458.90 4.63% 423.60 –3.42% 409.60 –6.61%
Kühn (1984) 311.40 325.82 4.63% 300.76 –3.42% 290.81 –6.61%
Hüster (2005) 280.70 293.70 4.63% 271.11 –3.42% 262.14 –6.61%
Bauer (2007) 444.08 464.64 4.63% 428.90 –3.42% 414.72 –6.61%
Girmscheidt (2010) 335.53 351.06 4.63% 324.06 –3.42% 313.34 –6.61%
Garbotz (1966) and Kotte (1997) 265.74 278.04 4.63% 256.65 –3.42% 248.17 –6.61%

Comparative evaluation of CAT 345B excavation productivity.

Equipment – model: Excavator – Caterpillar 345B
Soil type Loose soil
Work method Excavation and soil disposal on truck
Komatsu (2013) Caterpillar (2016) Liebherr (2003) Volvo (2015) Nunnally (2007) Peurifoy and Schexnayder (2002) BML (1983) and Hoffmann (2006) Kühn (1984) Hüster (2005) Bauer (2007) Girmscheidt (2010) Garbotz (1966) and Kotte (1997)
V(SAE/CECE)(m3) 4 4 4 4 4 4 3.48 3.48 3.48 4 4 3.48
texc (sec) 20.50 20.00 23.00 19.50 24.00 24.00 22.00 22.00 22.00 22.00 22.00 22.00
fs 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23
ffill 1.15 1.05 1.10 1.05 1.00 1.05 1.20 1.20 1.20 1.20 1.20 1.20
fdepth 1.30 × × × × × 1.13 1.13 1.13 1.13 1.13 1.13
fswing × × × × × × 0.95 0.95 0.95 0.95 0.95 0.95
fswing-depth × × × × 1.05 0.88 × × × × × ×
fdump × × × × × × 0.90 0.90 0.90 0.90 × 0.90
fskill × 0.75 0.85 × × 0.75 × 0.71 0.80 × 0.80 0.80
favail × × × 0.85 × × × × 0.80 × 0.85 0.85
fvol × × × × × × 0.92 0.92 0.92 0.90 0.90 0.92
fwear × × × × × × × × × 0.90 0.90 0.90
falt × × × × × × × × × × × 0.99
fE 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Q (m3/h) 573.23 523.06 540.02 608.00 498.15 383.58 438.60 311.40 280.70 444.08 335.53 265.74

Equipment deployment combinations and productivity results.

Working scenarios – operational combinations
Available equipment 1 2 3 4 5 6 7 8 9
Four trucks – CAT 725C
One excavator – CAT 345B 3 2 2 1 1 1 1 1 1
One excavator – CAT 330 - - 1 2 1 - 1 - -
One excavator – O&K RH16 - - - - 1 2 - 1 -
One loader – CAT 966H 1 2 1 1 1 1 2 2 3
Work type Transportation of loose soil
Working scenarios Komatsu (2013) Caterpillar (2016) Liebherr (2003) Volvo (2015) Nunnally (2007) Peurifoy and Schexnayder (2002) BML (1983), Bauer (2007), Garbotz (1966) and Hoffmann (2006) Kühn (1984) Hüster (2005) Girmscheidt (2010)
1 116.21 107.22 111.78 111.82 102.42 107.98 114.76 111.12 112.30 127.17
2 112.65 106.47 111.09 111.66 100.79 107.57 119.23 115.47 116.46 127.51
3 115.57 110.13 111.15 114.90 104.78 111.41 114.30 110.70 111.67 126.63
4 114.93 113.03 110.53 117.97 107.14 114.84 113.83 110.28 111.03 126.09
5 115.68 110.26 111.14 115.08 108.43 111.80 114.46 110.89 111.59 126.82
6 116.42 107.49 111.76 112.19 109.72 108.76 115.09 111.49 112.15 127.55
7 112.01 109.38 110.47 114.73 103.15 111.00 118.77 115.05 115.83 126.97
8 112.75 106.61 111.08 111.84 104.44 107.96 119.40 115.66 116.38 127.70
9 109.09 105.72 110.41 111.49   99.17 107.15 123.71 119.82 120.62 127.84

Productivity factors’ values specification and comparative analysis.

Productivity estimation methodology
Productivity factor Group A Group B
Equipment manufacturers Textbook methodologies
Bucket fill factor (ffill) Values based on the DIN 18300:2012 standard within the range 0.72–1.40 Indicative values within the range 0.60–1.20
Job efficiency factor (fE) Same approach for all methodologies: fE = (60–∑[Delays in min])/60
Operator skill factor (fskill) Values according to operator’s skill and experience Implicit effect included in cycle time estimation
Equipment availability factor (favail) Values according to equipment’s working hours within the range 0.65–1.00 (i.e. <1,000 hr favaill = 1; 3,500–5,000 hr favail= 0.65) No specific values’ range, but empirically defined as a percentage with probable value ~80% -
Swing angle factor (fswing) See Figure 2a Implicit effect included in the cycle time estimation
Excavation depth factor (fdepth) See Figure 2b Same as fswing
Combined swing angle and digging depth factor (fswing-depth) - - See Figure 2d
Bucket dump factor (fdump) fdump < 1 for targeted dump - -
Excavator-truck volumes match factor (fvol) See Figure 2c - -
Bucket teeth wear factor (fwear) fwear < 1 for worn teeth - -
Altitude factor (falt) falt < 1 for > 300 m altitude falt < 1 for > 760 m altitude -

Productivity variation for CAT 345B excavator based on swing angle.

Productivity results (m3/h) and variations depending on the swing angle
120° 60° Percentage of variation 90° Percentage of variation 180° Percentage of variation
Komatsu (2013) 573.23 671.50 17.14% 618.49 7.89% 534.15 –6.82%
Caterpillar (2016) 523.06 581.18 11.11% 550.59 5.26% 475.51 –9.09%
Liebherr (2003) 540.02 621.03 15.00% 591.45 9.52% 496.82 –8.00%
Volvo (2015) 608.00 658.67 8.33% 634.01 4.28% 564.57 –7.14%
Nunnally (2007) 498.15 583.55 17.14% 536.10 7.62% 441.22 –11.43%
Peurifoy and Schexnayder (2002) 383.58 505.62 31.82% 435.88 13.64% 309.48 –19.32%
BML (1983) and Hoffmann (2006) 438.60 484.76 10.53% 461.68 5.26% 406.28 –7.37%
Kühn (1984) 311.40 344.18 10.53% 327.79 5.26% 288.46 –7.37%
Hüster (2005) 280.70 310.25 10.53% 295.48 5.26% 260.02 –7.37%
Bauer (2007) 444.08 490.82 10.53% 467.45 5.26% 411.36 –7.37%
Girmscheidt (2010) 335.53 370.84 10.53% 353.19 5.26% 310.80 –7.37%
Garbotz (1966) and Kotte (1997) 265.74 293.71 10.53% 279.72 5.26% 246.16 –7.37%

Comparative evaluation of productivity estimation methodologies’ factors.

No. Estimation methodology Productivity factors
1 Bauer (2007) fs, ffill, fswing, fdepth, fvol, fwear, fE
2 BML (1983) fs, ffill, fswing, fdepth, fdump, fvol, fE
3 Caterpillar (2016) fs, ffill, f skill, fE
4 Volvo (2015) fs, ffill, f availl, fE
5 Garbotz (1966) fs, ffill, fswing, fdepth, fvol, fwear, falt, favail, fskill, fE
6 Girmscheidt (2010) fs, ffill, fswing, fdepth, fvol, fwear, favail, fskill, fE
7 Hoffmann (2006) fs, ffill, fswing, fdepth, fdump, fvol, fE
8 Hüster (2005) fs, ffill, fswing, fdepth, fE
9 Komatsu (2013) fs, ffill, fdepth, fE
10 Kotte (1997) fs, ffill, fswing, fdepth, fdump, fvol, fwear, falt, favail, fskill, fE
11 Kühn (1984) fs, ffill, fswing, fdepth, fdump, fvol, fskill, fE
12 Liebherr (2003) fs, ffill, fskill, fE
13 Nunnally (2007) fs, ffill, fswing-depth, fE
14 Peurifoy and Schexnayder (2002) fs, ffill, fswing-depth, fskill, fE
eISSN:
1847-6228
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other