1. bookVolume 20 (2020): Issue 3 (June 2020)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Open Access

A Comparison of Non-negative Tucker Decomposition and Parallel Factor Analysis for Identification and Measurement of Human EEG Rhythms

Published Online: 24 Jul 2020
Volume & Issue: Volume 20 (2020) - Issue 3 (June 2020)
Page range: 126 - 138
Received: 13 Jan 2020
Accepted: 16 Jun 2020
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English

[1] Miwakeichi, F., Martınez-Montes, E., Valdés-Sosa, P. A., Nishiyama, N., Mizuhara, H., Yamaguchi, Y. (2004). Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis. NeuroImage 22(3), 1035–1045.10.1016/j.neuroimage.2004.03.039Search in Google Scholar

[2] Jolliffe, I. (2002). Principal Component Analysis: Second Edition. Springer.Search in Google Scholar

[3] Hyvärinen, A., Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural networks 13(4-5), 411–430.10.1016/S0893-6080(00)00026-5Search in Google Scholar

[4] Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics 16, 1–84.Search in Google Scholar

[5] Carroll, J. D., Chang, J.-J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319.10.1007/BF02310791Search in Google Scholar

[6] Cichocki, A., Zdunek, R., Phan, A. H., Amari, S.-I. (2009). Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. John Wiley & Sons.10.1002/9780470747278Search in Google Scholar

[7] Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology 3(9), 528–536.10.1016/S1474-4422(04)00851-8Search in Google Scholar

[8] Carrasco, D. G., Cantalapiedra, J. A. (2016). Efectividad de la imaginería o práctica mental en la recuperación funcional tras el ictus: revisión sistemática [Effectiveness of motor imagery or mental practice in functional recovery after stroke: A systematic review]. Neurología 31(1), 43–52.10.1016/j.nrl.2013.02.003Search in Google Scholar

[9] Rosipal, R., Porubcová, N., Cimrová, B., Farkaš, I. (2018). Mirror-therapy as a way to start BCI robot-assisted rehabilitation: A single case longitudinal study of a patient with hemiparesis. In: Seventh International BCI Meeting: Abstract Book. BCI Society.Search in Google Scholar

[10] Rosipal, R., Porubcová, N., Cimrová, B., Farkaš, I. (2017). Neurorehabilitation training based on mental imagery of movement (using a robotic splint). http://aiolos.um.savba.sk/~roman/rrLab/video/RoboticArm_EN.mp4.Search in Google Scholar

[11] Rosipal, R., Porubcová, N., Barančok, P., Cimrová, B., Farkaš, I., Trejo, L. J. (2019). Effects of mirror-box therapy on modulation of sensorimotor EEG oscillatory rhythms: A single-case longitudinal study. Journal of Neurophysiology 121(2), 620–633.10.1152/jn.00599.2018Search in Google Scholar

[12] Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311.10.1007/BF02289464Search in Google Scholar

[13] Geladi, P. (1989). Analysis of multi-way (multi-mode) data. Chemometrics and Intelligent Laboratory Systems 7(1), 11–30.10.1016/0169-7439(89)80108-XSearch in Google Scholar

[14] Estienne, F., Matthijs, N., Massart, D., Ricoux, P., Leibovici, D. (2001). Multi-way modelling of high-dimensionality electroencephalographic data. Chemo-metrics and Intelligent Laboratory Systems 58(1), 59–72.10.1016/S0169-7439(01)00140-XSearch in Google Scholar

[15] Cong, F., Lin, Q.-H., Kuang, L.-D., Gong, X.-F., Astikainen, P., Ristaniemi, T. (2015). Tensor decomposition of EEG signals: A brief review. Journal of Neuroscience Methods 248, 59–69.10.1016/j.jneumeth.2015.03.01825840362Search in Google Scholar

[16] Latchoumane, C.-F. V., Vialatte, F.-B., Solé-Casals, J., Maurice, M., Wimalaratna, S. R., Hudson, N., Jeong, J., Cichocki, A. (2012). Multiway array decomposition analysis of EEGs in Alzheimer’s disease. Journal of Neuroscience Methods 207(1), 41–50.10.1016/j.jneumeth.2012.03.005Search in Google Scholar

[17] Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B. (2007). Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18.10.1093/bioinformatics/btm210Search in Google Scholar

[18] Seeck, M., Koessler, L., Bast, T., Leijten, F., Michel, C., Baumgartner, C., He, B., Beniczky, S. (2017). The standardized EEG electrode array of the IFCN. Clinical Neurophysiology 128(10), 2070–2077.10.1016/j.clinph.2017.06.254Search in Google Scholar

[19] Brain Products, GmbH (2013). BrainVision Analyser 2.Search in Google Scholar

[20] Wen, H., Liu, Z. (2016). Separating fractal and oscillatory components in the power spectrum of neurophysiological signal. Brain Topography 29(1), 13–26.10.1007/s10548-015-0448-0Search in Google Scholar

[21] Buzsáki, G., Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929.Search in Google Scholar

[22] He, B. J., Zempel, J. M., Snyder, A. Z., Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron 66(3), 353–369.10.1016/j.neuron.2010.04.020Search in Google Scholar

[23] Kruskal, J. B. (1989). Rank, decomposition, and uniqueness for 3-way and N-way arrays. In: Multiway Data Analysis. Elsevier Science Publishers B.V. (North-Holland), pp. 7–18.Search in Google Scholar

[24] Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 38(2), 149–171.Search in Google Scholar

[25] Kiers, H. A. L. (1998). Recent developments in three-mode factor analysis: Constrained three-mode factor analysis and core rotations. In: Data Science, Classification, and Related Methods. Springer-Verlag Tokyo, pp. 563–574.10.1007/978-4-431-65950-1_62Search in Google Scholar

[26] Kiers, H. A. L., Smilde, A. K. (1998). Constrained three-mode factor analysis as a tool for parameter estimation with second-order instrumental data. Journal of Chemometrics 12(2), 125–147.10.1002/(SICI)1099-128X(199803/04)12:2<125::AID-CEM504>3.0.CO;2-DSearch in Google Scholar

[27] Smilde, A. K., Tauler, R., Henshaw, J. M., Burgess, L. W., Kowalski, B. R. (1994). Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 3. medium-rank second-order calibration with restricted Tucker models. Analytical Chemistry 66(20), 3345–3351.Search in Google Scholar

[28] Bro, R., Kiers, H. A. L. (2003). A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics 17(5), 274–286.10.1002/cem.801Search in Google Scholar

[29] Kompany-Zareh, M., Akhlaghi, Y., Bro, R. (2012). Tucker core consistency for validation of restricted Tucker3 models. Analytica Chimica Acta 723, 18–26.10.1016/j.aca.2012.02.028Search in Google Scholar

[30] Ester, M., Kriegel, H.-P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In: Second International Conference on Knowledge Discovery & Data Mining. American Association for Artificial Intelligence, pp. 226–231.Search in Google Scholar

[31] Andersson, C., Bro, R. (2000). The N-way toolbox for Matlab. Chemometrics and Intelligent Laboratory Systems 52, 1–4.10.1016/S0169-7439(00)00071-XSearch in Google Scholar

[32] Sterman, M. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-Regulation 21(1), 3–33.10.1007/BF022141478833314Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo