Open Access

First-principle study on the effect of S/Se/Te doping and VZn-Hi coexistence on ZnO electrical conductivity


Cite

Dash P, Manna A, Mishrac NC, Varma S. Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis. Physica E. 2019;107: 38–6. DashP MannaA MishracNC VarmaS Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis Physica E 2019 107 38 6 Search in Google Scholar

Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, et al. A comprehensive review of ZnO materials and devices. J Appl Phys. 2005;98: 041301–103. ÖzgürÜ AlivovYI LiuC TekeA ReshchikovMA DoğanS A comprehensive review of ZnO materials and devices J Appl Phys 2005 98 041301 103 Search in Google Scholar

Yu W, Xu D, Peng T. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem. 2015;3: 19936–47. YuW XuD PengT Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism J Mater Chem 2015 3 19936 47 Search in Google Scholar

Park TY, Choi YS, Kim SM, Jung GY, Park SJ, Kwon BJ, et al. Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN. Appl Phys Lett. 2011;98: 251111–3. ParkTY ChoiYS KimSM JungGY ParkSJ KwonBJ Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN Appl Phys Lett 2011 98 251111 3 Search in Google Scholar

Wang H, Li K, Tao Y, Li J, Li Y, Guo LL, et al. Smooth ZnO: Al-AgNWs composite electrode for flexible organic light-emitting device. Nanoscale Res Lett. 2017;12: 77–7. WangH LiK TaoY LiJ LiY GuoLL Smooth ZnO: Al-AgNWs composite electrode for flexible organic light-emitting device Nanoscale Res Lett 2017 12 77 7 Search in Google Scholar

Alfredo BB, Daniel O, Sergio JS. n- to p-type conductivity transition and band-gap renormalization in ZnO: (Cu+Te) codoped films. Phys Rev Mater. 2021;5: 065402–10. AlfredoBB DanielO SergioJS n- to p-type conductivity transition and band-gap renormalization in ZnO: (Cu+Te) codoped films Phys Rev Mater 2021 5 065402 10 Search in Google Scholar

Zhang T, Li MK, Chen J, Wang Y, Miao LS, Lu YM, et al. Multi-component ZnO alloys: bandgap engineering, hetero-structures, and optoelectronic devices. Mater Sci Eng R Rep. 2022;147: 100661–34. ZhangT LiMK ChenJ WangY MiaoLS LuYM Multi-component ZnO alloys: bandgap engineering, hetero-structures, and optoelectronic devices Mater Sci Eng R Rep 2022 147 100661 34 Search in Google Scholar

Niu WZ, Xu HB, Guo YM, Li YG, Ye ZZ, Zhu LP. The effect of sulfur on the electrical properties of S and N co-doped ZnO thin films: experiment and first-principles calculations. Phys Chem Chem Phys. 2015;17: 16705–4. NiuWZ XuHB GuoYM LiYG YeZZ ZhuLP The effect of sulfur on the electrical properties of S and N co-doped ZnO thin films: experiment and first-principles calculations Phys Chem Chem Phys 2015 17 16705 4 Search in Google Scholar

Dib K, Brahimi R, Bessekhouad Y, Tayebi N, Trari M. Structural, optical and transport properties of SxZnO. Mater Sci Semicond Process. 2016;48: 52–9 DibK BrahimiR BessekhouadY TayebiN TrariM Structural, optical and transport properties of SxZnO Mater Sci Semicond Process 2016 48 52 9 Search in Google Scholar

Cai H, Xu HB, Ye ZZ, Huang JY. Realization of p-type Se–N co-doped ZnO films by radio-frequency magnetron sputtering. Mater Lett. 2013;108: 183–5. CaiH XuHB YeZZ HuangJY Realization of p-type Se–N co-doped ZnO films by radio-frequency magnetron sputtering Mater Lett 2013 108 183 5 Search in Google Scholar

Tang K, Gu SL, Wu KP, Zhu SM, Ye JD, Zhang R, et al. Tellurium assisted realization of p-type N-doped ZnO. Appl Phys Lett. 2010;96: 1830–4. TangK GuSL WuKP ZhuSM YeJD ZhangR Tellurium assisted realization of p-type N-doped ZnO Appl Phys Lett 2010 96 1830 4 Search in Google Scholar

Park S, Minegishi T, Oh D, Lee H, Taishi T, Park J, et al. High-quality p-type ZnO films grown by co-doping of N and Te on Zn-Face ZnO Substrates. Appl Phys Express. 2010;3: 031103–3. ParkS MinegishiT OhD LeeH TaishiT ParkJ High-quality p-type ZnO films grown by co-doping of N and Te on Zn-Face ZnO Substrates Appl Phys Express 2010 3 031103 3 Search in Google Scholar

Persson C, Platzer-Björkman C, Malmström J, Törndahl T, Edoff M. Strong valence-band offset bowing of ZnO1−−xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys Rev Lett. 2006;97: 146403–4. PerssonC Platzer-BjörkmanC MalmströmJ TörndahlT EdoffM Strong valence-band offset bowing of ZnO1−−xSx enhances p-type nitrogen doping of ZnO-like alloys Phys Rev Lett 2006 97 146403 4 Search in Google Scholar

Hou QY, Qi MD, Li Y. Effects of p-type conductive properties of triaxial strain-regulated ZnO (S, Se, Te) system. Phys Scr. 2021;96: 125815–11. HouQY QiMD LiY Effects of p-type conductive properties of triaxial strain-regulated ZnO (S, Se, Te) system Phys Scr 2021 96 125815 11 Search in Google Scholar

Liu YX, Zhang HL, Zhang ZX, Xie YZ, Xie EY. Conversion of p-type to n-type conductivity in undoped ZnO films by increasin operating temperature. Appl Surf Sci. 2010;257: 1236–8. LiuYX ZhangHL ZhangZX XieYZ XieEY Conversion of p-type to n-type conductivity in undoped ZnO films by increasin operating temperature Appl Surf Sci 2010 257 1236 8 Search in Google Scholar

Zeng YJ, Ye ZZ, Xu WZ, Lu JG, He HP, Zhao BH, et al. p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth. Appl Phys Lett. 2006;88: 262103–3. ZengYJ YeZZ XuWZ LuJG HeHP ZhaoBH p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth Appl Phys Lett 2006 88 262103 3 Search in Google Scholar

Gu T, Hu ET, Guo S, Wu Y, Wang J, Wang ZY, et al. Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film. Vacuum. 2019;163: 69–74. GuT HuET GuoS WuY WangJ WangZY Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film Vacuum 2019 163 69 74 Search in Google Scholar

Dib K, Brahimi R, Trari M, Bessekhouad Y. Optical properties of SxZnO and their effect toward the photoacativity. Optik. 2019;178: 1102–10. DibK BrahimiR TrariM BessekhouadY Optical properties of SxZnO and their effect toward the photoacativity Optik 2019 178 1102 10 Search in Google Scholar

Welna M, Baranowski M, Linhart WM, Kudrawiec R, Yu KM, Mayer M, et al. Multicolor emission from intermediate band semiconductor ZnO1−xSex. Sci Rep. 2017;7: 44214–6. WelnaM BaranowskiM LinhartWM KudrawiecR YuKM MayerM Multicolor emission from intermediate band semiconductor ZnO1−xSex Sci Rep 2017 7 44214 6 Search in Google Scholar

Sahu R, Dileep K, Negi DS, Nagaraja KK, Datta R. Ambipolar behavior of Te and its effect on the optical emission of ZnO: Te epitaxial thin film. Phys Status Solidi. 2015;252: 1743–8. SahuR DileepK NegiDS NagarajaKK DattaR Ambipolar behavior of Te and its effect on the optical emission of ZnO: Te epitaxial thin film Phys Status Solidi 2015 252 1743 8 Search in Google Scholar

Wu LQ, Li SQ, Li YC, Li ZZ, Tang GD, Qi WH, et al. Presence of monovalent oxygen anions in oxides demonstrated using X-ray photoelectron spectra. Appl Phys Lett. 2016;108: 173. WuLQ LiSQ LiYC LiZZ TangGD QiWH Presence of monovalent oxygen anions in oxides demonstrated using X-ray photoelectron spectra Appl Phys Lett 2016 108 173 Search in Google Scholar

Ghosh S, Khan GG, Das B, Mandal K. Vacancy-induced intrinsic d 0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires. J Appl Phys. 2011;109: 951. GhoshS KhanGG DasB MandalK Vacancy-induced intrinsic d 0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires J Appl Phys 2011 109 951 Search in Google Scholar

Pickett WE, Erwin SC, Ethridge EC. Reformulation of the LDA+U method for a local orbital basis. Phys Rev B. 1998;58: 1201–9. PickettWE ErwinSC EthridgeEC Reformulation of the LDA+U method for a local orbital basis Phys Rev B 1998 58 1201 9 Search in Google Scholar

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77: 3865–8. PerdewJP BurkeK ErnzerhofM Generalized gradient approximation made simple Phys Rev Lett 1996 77 3865 8 Search in Google Scholar

Jia XF, Hou QY, Xu ZC, Qua LF. Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle. J Magn Magn Mater. 2018;465: 128–35. JiaXF HouQY XuZC QuaLF Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle J Magn Magn Mater 2018 465 128 35 Search in Google Scholar

Guo SQ, Hou QY, Zhao CW, Zhang Y. Study of the effect of Cu heavy doping on band gap and absorption spectrum of ZnO. Chem Phys Lett. 2014;614: 15–20. GuoSQ HouQY ZhaoCW ZhangY Study of the effect of Cu heavy doping on band gap and absorption spectrum of ZnO Chem Phys Lett 2014 614 15 20 Search in Google Scholar

Liu YJ, Hou QY, Sha SL, Xu ZC. Electronic structure, optical and ferromagnetic properties of ZnO co-doped with Ag and Co according to first-principles calculations. Vacuum. 2020;173: 109127. LiuYJ HouQY ShaSL XuZC Electronic structure, optical and ferromagnetic properties of ZnO co-doped with Ag and Co according to first-principles calculations Vacuum 2020 173 109127 Search in Google Scholar

Jaballah S, Benamara M, Dahman H, Ly A, Lahem D, Debliquy M, et al. Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Mater Chem Phys. 2020;255: 123643–11. JaballahS BenamaraM DahmanH LyA LahemD DebliquyM Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations Mater Chem Phys 2020 255 123643 11 Search in Google Scholar

Rahm M, Hoffmann R, Ashcroft NW. Atomic and ionic radii of elements 1–96. Chem Eur J. 2016;22: 1–9. RahmM HoffmannR AshcroftNW Atomic and ionic radii of elements 1–96 Chem Eur J 2016 22 1 9 Search in Google Scholar

Li M, Zhang JY, Zhang Y. First-principles calculation of compensated (2N, W) codoping impacts on band gap engineering in anatase TiO2. Chem Phys Lett. 2012;527: 63–6. LiM ZhangJY ZhangY First-principles calculation of compensated (2N, W) codoping impacts on band gap engineering in anatase TiO2 Chem Phys Lett 2012 527 63 6 Search in Google Scholar

Cui XY, Medvedeva JE, Delley B, Freeman AJ, Newman N, Stampfl C. Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN. Phys Rev Lett. 2005;95: 256404–4 CuiXY MedvedevaJE DelleyB FreemanAJ NewmanN StampflC Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN Phys Rev Lett 2005 95 256404 4 Search in Google Scholar

Chris G, Vande W. Interactions of hydrogen with native defects in GaN. Phys Rev B. 1997;56: R10 020–23. ChrisG VandeW Interactions of hydrogen with native defects in GaN Phys Rev B 1997 56 R10 020 23 Search in Google Scholar

Sun PP, Bai LC, Kripalani DR, Zhou K. A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solarcells. NPJ Comput Mater. 2019;5: 1–7. SunPP BaiLC KripalaniDR ZhouK A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solarcells NPJ Comput Mater 2019 5 1 7 Search in Google Scholar

Deb J, Seriani N, Sarkar U. Ultrahigh carrier mobility of penta-graphene: a first-principle study. Physica E. 2021;127: 114507–7. DebJ SerianiN SarkarU Ultrahigh carrier mobility of penta-graphene: a first-principle study Physica E 2021 127 114507 7 Search in Google Scholar

Hou QY, Sha SL. Effect of biaxial strain on the p-type of conductive properties of (S, Se, Te) and 2 N co-doped ZnO. Mater Today Commun. 2020;24: 101063–7. HouQY ShaSL Effect of biaxial strain on the p-type of conductive properties of (S, Se, Te) and 2 N co-doped ZnO Mater Today Commun 2020 24 101063 7 Search in Google Scholar

Janotti A, Van de Walle CG. Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys. 2009;72: 126501–29. JanottiA Van de WalleCG Fundamentals of zinc oxide as a semiconductor Rep Prog Phys 2009 72 126501 29 Search in Google Scholar

Yu WL, Zhang JF, Peng TY. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl Catal B: Environ. 2016;181: 220–7. YuWL ZhangJF PengTY New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts Appl Catal B: Environ 2016 181 220 7 Search in Google Scholar

Perdew JP, Mel L. Physical content of the exact Kohn–Sham orbital energies: band gap and derivative discontinuities. Phys Rev Lett. 1983;51: 1884–7. PerdewJP MelL Physical content of the exact Kohn–Sham orbital energies: band gap and derivative discontinuities Phys Rev Lett 1983 51 1884 7 Search in Google Scholar

Xu ZC, Hou QY, Qu LF. Effects on the optical properties and conductivity of Ag–N co-doped ZnO. Int J Mod Phys B. 2017;31: 1750008–18. XuZC HouQY QuLF Effects on the optical properties and conductivity of Ag–N co-doped ZnO Int J Mod Phys B 2017 31 1750008 18 Search in Google Scholar

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties