Open Access

First-principle study on the effect of S/Se/Te doping and VZn-Hi coexistence on ZnO electrical conductivity


Cite

Fig. 1

Model: (A) Zn36O36, (B) Zn35RO35 (R = S/Se/Te), and (C) Zn35RHiO35 (R = S/Se/Te).Gray, red, yellow, and green represent Zn, O, R (R = S/Se/Te), and H atoms, respectively
Model: (A) Zn36O36, (B) Zn35RO35 (R = S/Se/Te), and (C) Zn35RHiO35 (R = S/Se/Te).Gray, red, yellow, and green represent Zn, O, R (R = S/Se/Te), and H atoms, respectively

Fig. 2

Relationship between total energy of Zn36O36 and cutoff energy
Relationship between total energy of Zn36O36 and cutoff energy

Fig. 3

Formation energies of 



Zn35RO35a1−a3
{\rm{Zn}_{35}}{\rm{RO}}_{35}^{a1 - a3}


 (R = S/Se/Te) systems with different relative distances between R substitution atoms and VZn
Formation energies of Zn35RO35a1−a3 {\rm{Zn}_{35}}{\rm{RO}}_{35}^{a1 - a3} (R = S/Se/Te) systems with different relative distances between R substitution atoms and VZn

Fig. 4

Formation energies of the 



Zn35RHib1−b3O35a1
{\rm{Zn}_{35}}{\rm{RH}_{\rm{i}}}^{b1 - b3}{\rm{O}}_{35}^{a1}


 (R = S/Se/Te) system with different positions of b1, b2, and b3 in the Hi
Formation energies of the Zn35RHib1−b3O35a1 {\rm{Zn}_{35}}{\rm{RH}_{\rm{i}}}^{b1 - b3}{\rm{O}}_{35}^{a1} (R = S/Se/Te) system with different positions of b1, b2, and b3 in the Hi

Fig. 5

Band structure of pure Zn36O36
Band structure of pure Zn36O36

Fig. 6

Band structure distribution: (A) Zn35SO35; (B) Zn35SeO35; (C) Zn35TeO35; (D) Zn35SHiO35; (E) Zn35SeHiO35; and (F) Zn35TeHiO35
Band structure distribution: (A) Zn35SO35; (B) Zn35SeO35; (C) Zn35TeO35; (D) Zn35SHiO35; (E) Zn35SeHiO35; and (F) Zn35TeHiO35

Fig. 7

DOS analysis diagram: (A) Zn36O36, (B) Zn35SO35, (C) Zn35SeO35, and (D) Zn35SHiO35. DOS, density of states
DOS analysis diagram: (A) Zn36O36, (B) Zn35SO35, (C) Zn35SeO35, and (D) Zn35SHiO35. DOS, density of states

Relative distance d between the replacement atoms and VZn; the reduced lattice constants a and c and volume V of Zn36O36, Zn35RO35 (R = S/Se/Te)a1−a3, and Zn35RHib1−b3O35a2 {\rm{Zn}.{35}}{\rm{R}}{{\rm{H}}.{\rm{i}}}^{b1 - b3}{\rm{O}}.{35}^{a2} (R = S/Se/Te) doping systems

Models dM − VZn (Å) a (Å) c (Å) V (Å3)
Zn36O36 a = 3.287 c = 5.299 49.485
Zn35SO35a1 {\rm{Zn}_{35}}{\rm{SO}}_{35}^{a1} 1.992 a = 3.301 c = 5.298 49.988
Zn35SO35a2 {\rm{Zn}_{35}}{\rm{SO}}_{35}^{a2} 3.811 a = 3.303 c = 4.955 50.490
Zn35SO35a3 {\rm{Zn}_{35}}{\rm{SO}}_{35}^{a3} 4.570 a = 3.303 c = 5.334 50.385
Zn35SeO35a1 {\rm{Zn}_{35}}{\rm{SeO}}_{35}^{a1} 1.992 a = 3.304 c = 5.294 50.047
Zn35SeO35a2 {\rm{Zn}_{35}}{\rm{SeO}}_{35}^{a2} 3.811 a = 3.307 c = 5.351 50.708
Zn35SeO35a3 {\rm{Zn}_{35}}{\rm{SeO}}_{35}^{a3} 4.570 a = 3.307 c = 5.338 50.584
Zn35TeO35a1 {\rm{Zn}_{35}}{\rm{TeO}}_{35}^{a1} 1.992 a = 3.308 c = 5.295 50.204
Zn35TeO35a2 {\rm{Zn}_{35}}{\rm{TeO}}_{35}^{a2} 3.811 a = 3.316 c = 5.373 51.131
Zn35TeO35a3 {\rm{Zn}_{35}}{\rm{TeO}}_{35}^{a3} 4.570 a = 3.315 c = 5.344 50.927
Zn35SHib1O35a1 {\rm{Zn}_{35}}{\rm{SH}_{\rm{i}}}^{b1}{\rm{O}}_{35}^{a1} 1.992 a = 3.307 c = 5.316 50.332
Zn35SHib2O35a1 {\rm{Zn}_{35}}{\rm{SH}_{\rm{i}}}^{b2}{\rm{O}}_{35}^{a1} 1.992 a = 3.332 c = 5.289 50.427
Zn35SHib3O35a1 {\rm{Zn}_{35}}{\rm{SH}_{\rm{i}}}^{b3}{\rm{O}}_{35}^{a1} 1.992 a = 3.314 c = 4.968 50.546
Zn35SeHib1O35a1 {\rm{Zn}_{35}}{\rm{SeH}_{\rm{i}}}^{b1}{\rm{O}}_{35}^{a1} 1.992 a = 3.309 c = 5.316 50.402
Zn35SeHib2O35a1 {\rm{Zn}_{35}}{\rm{SeH}_{\rm{i}}}^{b2}{\rm{O}}_{35}^{a1} 1.992 a = 3.334 c = 5.286 50.468
Zn35SeHib3O35a1 {\rm{Zn}_{35}}{\rm{SeH}_{\rm{i}}}^{b3}{\rm{O}}_{35}^{a1} 1.992 a = 3.316 c = 5.317 50.607
Zn35TeHib1O35a1 {\rm{Zn}_{35}}{\rm{TeH}_{\rm{i}}}^{b1}{\rm{O}}_{35}^{a1} 1.992 a = 3.317 c = 5.322 50.620
Zn35TeHib2O35a1 {\rm{Zn}_{35}}{\rm{TeH}_{\rm{i}}}^{b2}{\rm{O}}_{35}^{a1} 1.992 a = 3.345 c = 5.293 50.690
Zn35TeHib3O35a1 {\rm{Zn}_{35}}{\rm{TeH}_{\rm{i}}}^{b3}{\rm{O}}_{35}^{a1} 1.992 a = 3.325 c = 5.322 50.825

Hole concentrations of the Zn36O36, Zn35SO35, Zn35SeO35, and Zn35SHiO35 systems

Models Pi (×1021 cm−3)
Zn36O36 0
Zn35SO35 2.80
Zn35SeO35 2.42
Zn35SHiO35 1.74

Conductivities of the Zn36O36, Zn35SO35, Zn35SeO35, and Zn35SHiO35 systems

Models σi (×102 S·cm−1)

G→ F G→ Z
Zn36O36 0 0
Zn35SO35 464.39 0.26
Zn35SeO35 27.08 0.014
Zn35SHiO35 94.04 474.11

Effective mass, elastic modulus, deformation potential, and hole mobility of Zn35RO35 (R = S/Se/Te) and Zn35RHiO35 (R = S/Se/Te) systems

Models Direction mh*·mo−1 c3D (×1011J·m−2) EI(eV) μh (cm2·V−1·s−1)
Zn36O36 ‖ a 0.22 0 0 0
0.21 [35] 0 0 0
‖ c 0.17 0 0 0
0.24 [35] 0 0 0
Zn35SO35 ‖ a 6.91 54.17 5.07 103.60
‖ c 137.89 43.12 4.54 0.058
Zn35SeO35 ‖ a 35.93 68.79 2.80 6.698
‖ c 744.99 67.35 2.77 0.004
Zn35TeO35 ‖ a 7.23 123.73 44.74 2.707
‖ c 5.06 136.331 46.96 6.625
Zn35SHiO35 ‖ a 19.70 82.69 2.96 33.795
‖ c 10.31 57.79 2.47 170.383
Zn35SeHiO35 ‖ a 12.02 95.64 20.54 2.79
‖ c 2.25 71.01 17.70 183.061
Zn35TeHiO35 ‖ a 9.69 118.47 38.63 1.674
‖ c 1.74 104.50 36.28 122.634
eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties