Open Access

The ability of different types of sand to preserve the integrity of calcium sulfoaluminate cement cement mortar during exposure to elevated temperatures


Cite

Fig. 1

Chemical composition of the river sand
Chemical composition of the river sand

Fig. 2

Chemical composition of the artificial sand
Chemical composition of the artificial sand

Fig. 3

Chemical composition of the basalt sand
Chemical composition of the basalt sand

Fig. 4

XRD spectra
XRD spectra

Fig. 5

Microscopic image of mortar sample after different temperature exposure
Microscopic image of mortar sample after different temperature exposure

Fig. 6

EDS of the different CSA mortars when heated
EDS of the different CSA mortars when heated

Fig. 7

TG of the different mortars
TG of the different mortars

Fine aggregate gradation

Sieve size (mm) %passing Heat conductivity W/(m·C) Purchase price in the Chinese market US$/kg
Gradation
0–0.6 20
0.6–1.18 45 0.27 39 River sand
1.18–2.36 25 0.05 49 Artificial sand
2.36–4.75 10 0.12 90 Basalt sand

The average atomic ratios obtained by EDS in the different heated mortar samples

Experimental EDS ratios Different sample Ca/Si Ca/Al Ca/S
BeliteYe’elimiteAlite NAC_ RSM_ 100°C 3.04 6.75 7.36
BeliteYe’elimiteAlite NAC_ RSM_ 200°C 5.34 5.40 5.39
BeliteYe’elimiteAlite NAC_ RSM_ 300°C 0.36 0.68 3.64
BeliteYe’elimiteAlite NAC_ ASM_ 100°C 5.79 3.80 3.08
BeliteYe’elimiteAlite NAC_ ASM_ 200°C 3.92 2.83 6.85
BeliteYe’elimiteAlite NAC_ ASM_ 300°C 10.50 17.93 16.70
BeliteYe’elimiteAlite NAC_ BSM_ 100°C 5.16 7.41 8.40
BeliteYe’elimiteAlite NAC_ BSM_ 200°C 3.17 4.64 4.40
BeliteYe’elimiteAlite NAC_ BSM_ 300°C 130.35 33.76 12.91

Mixing of the mortar samples

Number of samples CSA (g) water Different type of sand (g) River, Basalt, Artificial water/cement ratio Temperature °C
36 (12 for each type of sand) 450 225 1350 0.5 20,100,200,300

Strength of the different samples

Strength (MPa) Heating temperature/°C

Reference sample Standard deviation of the compressive strength and flexural strength at 20°C 100°C Standard deviation of the compressive strength and flexural strength at 100°C Loss rate %
RSMNAC Compressive strength 21 1.55 10.8 1.17 48.6
Flexural strength 4.7 1.00 3.7 1.36 21.3
ASMNAC Compressive strength 25 3.43 22.1 1.02 11.6
Flexural strength 5.9 0.78 5.4 0.68 8.5
BSMNAC Compressive strength 27.1 3.88 14.8 0.82 45.4
Flexural strength 5.1 0.97 4.9 0.85 3.9

Strength loss vs. temperature

20°C 100 °C 200° C 300 °C
Strength MPa Loss in % Strength MPa Loss in % Strength MPa Loss in %
RSM Compressive strength 21 10.8 (−)48.6 6.3 (−)70 5.2 (−)75.2
RSM Flexural strength 4.7 3.7 (−)21.3 1.2 (−)74.5 1.2 (−)74.5
ASM Compressive strength 25 22.1 (−)11.6 6.9 (−)72.4 5 (−)80
ASM Flexural strength 5.9 5.4 (−)8.5 1.5 (−)74.6 0.8 (−)86.4
BSM Compressive strength 27.1 14.8 (−)45.4 5.66 (−)79.1 3.05 (−)88.7
BSM Flexural strength 5.1 4.9 (−)3.9 2 (−)60.8 1.8 (−)64.7

CSA chemical composition weight in percentage

CaO Al2O3 SO3 SiO2 Fe2O3 MgO TiO2 K2O SrO Na2O Cl P2O5
519.4 86.2 86.2 40.5 80.0 13.1 5.1 6.8 59.9 0.5 1.3 0.5
45.28% 17.51% 15.76% 9.19% 2.50% 1.90% 0.75% 0.48% 0.17% 0.19% 0.11% 0.10%
eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties