Open Access

Static friction of normal and reversed metal–polymer sliding pairs

   | Mar 03, 2023

Cite

The frictional cooperation of materials with different hardnesses occurs in machine elements in one of the following two variants: simple or reversed friction pairs. For a simple sliding pair, the sliding materials' deformation area (contact area) does not move over the surface of the polymeric element during their interaction. In the case of reversed pairs, the contact surface changes its position as it moves over the surface of the polymer element. Tribological tests of selected sliding pairs (polymer on steel or steel on polymer) in static friction were carried out on a tribotester for tests in a reciprocating motion. The polymers selected for the research were popular sliding materials in engineering applications: ultra-high molecular weight polyethylene (PEUHMW), polyoxymethylene (POM) and polytetrafluoroethylene (PTFE). These materials cooperated with the C45 steel at different unit pressure (P = 0.5; 1; 2 [MPa]) in dry friction conditions. The measurement results showed a significant influence of the material combination variant (metal–polymer, polymer–metal) on the value of the friction coefficient. In all tested material combinations in which the steel sample (pin) slid over the polymer plate, the friction coefficient was higher than when the polymer sample worked with the steel plate.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties