Open Access

Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powders


Cite

Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int Mater Rev. 2019;64(6): 355–80. doi:10.1080/09506608.2018.1516713. DaroliaR Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects Int Mater Rev. 2019 64 6 355 80 10.1080/09506608.2018.1516713 Open DOISearch in Google Scholar

Farahmand P, Kovacevic R. Corrosion and wear behavior of laser cladded Ni-WC coatings. Surf Coat Technol. 2015;276: 121–35. doi:10.1016/j.surfcoat.2015.06.039. FarahmandP KovacevicR Corrosion and wear behavior of laser cladded Ni-WC coatings Surf Coat Technol. 2015 276 121 35 10.1016/j.surfcoat.2015.06.039 Open DOISearch in Google Scholar

Deng P, Yao C, Feng K, Huang X, Li Z, Li Y, et al. Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating. Surf Coat Technol. 2018;335: 334–44. doi:10.1016/j.surfcoat.2017.12.047. DengP YaoC FengK HuangX LiZ LiY Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating Surf Coat Technol. 2018 335 334 44 10.1016/j.surfcoat.2017.12.047 Open DOISearch in Google Scholar

Chen Y, Lu F, Zhang J, Nie P, Hosseini SRE, Feng K, et al. Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel 718. Carbon. 2016;107: 361–70. doi:10.1016/j.carbon.2016.06.014. ChenY LuF ZhangJ NieP HosseiniSRE FengK Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel 718 Carbon. 2016 107 361 70 10.1016/j.carbon.2016.06.014 Open DOISearch in Google Scholar

Lei J, Shi C, Zhou S, Gu Z, Zhang LC. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding. Surf Coat Technol. 2018;334: 274–85. doi:10.1016/j.surfcoat.2017.11.051. LeiJ ShiC ZhouS GuZ ZhangLC Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding Surf Coat Technol. 2018 334 274 85 10.1016/j.surfcoat.2017.11.051 Open DOISearch in Google Scholar

Janicki D, Musztyfaga-Staszuk M. Direct diode laser cladding of Inconel 625/WC composite coatings. Stroj Vestn/J Mech Eng. 2016;62(6): 363–72. doi:10.5545/svjme.2015.3194. JanickiD Musztyfaga-StaszukM Direct diode laser cladding of Inconel 625/WC composite coatings Stroj Vestn/J Mech Eng. 2016 62 6 363 72 10.5545/svjme.2015.3194 Open DOISearch in Google Scholar

Hong C, Gu D, Dai D, Gasser A, Weisheit A, Kelbassa I, et al. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol. 2013;54: 98–109. doi:10.1016/j.optlastec.2013.05.011. HongC GuD DaiD GasserA WeisheitA KelbassaI Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures Opt Laser Technol. 2013 54 98 109 10.1016/j.optlastec.2013.05.011 Open DOISearch in Google Scholar

Pizzatto A, Teixeira MF, Rabelo A, Falcade T, Scheid A. Microstructure and wear behavior of NbC-reinforced Ni-based alloy composite coatings by laser cladding. Mater Res. 2021;24(3): e20200447. doi:10.1590/1980-5373-MR-2020-0447. PizzattoA TeixeiraMF RabeloA FalcadeT ScheidA Microstructure and wear behavior of NbC-reinforced Ni-based alloy composite coatings by laser cladding Mater Res. 2021 24 3 e20200447 10.1590/1980-5373-MR-2020-0447 Open DOISearch in Google Scholar

Yu T, Tang H. Microstructure and high-temperature wear behavior of laser clad TaC-reinforced Ni-Al-Cr coating. Appl Surf Sci. 2022;592: 153263. doi:10.1016/j.apsusc.2022.153263. YuT TangH Microstructure and high-temperature wear behavior of laser clad TaC-reinforced Ni-Al-Cr coating Appl Surf Sci. 2022 592 153263 10.1016/j.apsusc.2022.153263 Open DOISearch in Google Scholar

Janicki D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles. Opt Laser Technol. 2017;94: 6–14. doi:10.1016/j.optlastec.2017.03.007. JanickiD Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles Opt Laser Technol. 2017 94 6 14 10.1016/j.optlastec.2017.03.007 Open DOISearch in Google Scholar

Xu Z, Xie Y, Ebrahimnia M, Dang H. Effect of B4C nanoparticles on microstructure and properties of laser cladded IN625 coating. Surf Coat Technol. 2021;416: 127154. doi:10.1016/j.surfcoat.2021.127154. XuZ XieY EbrahimniaM DangH Effect of B4C nanoparticles on microstructure and properties of laser cladded IN625 coating Surf Coat Technol. 2021 416 127154 10.1016/j.surfcoat.2021.127154 Open DOISearch in Google Scholar

Muvvala G, Karmakar DP, Nath AK. Online assessment of TiC decomposition in laser cladding of metal matrix composite coating. Mater Des. 2017;121: 310–20. doi:10.1016/j.matdes.2017.02.061. MuvvalaG KarmakarDP NathAK Online assessment of TiC decomposition in laser cladding of metal matrix composite coating Mater Des. 2017 121 310 20 10.1016/j.matdes.2017.02.061 Open DOISearch in Google Scholar

Chen L, Yu T, Chen X, Zhao Y, Guan C. Process optimization, microstructure and microhardness of coaxial laser cladding TiC reinforced Ni-based composite coatings. Opt Laser Technol. 2022;152: 108129. doi:10.1016/j.optlastec.2022.108129. ChenL YuT ChenX ZhaoY GuanC Process optimization, microstructure and microhardness of coaxial laser cladding TiC reinforced Ni-based composite coatings Opt Laser Technol. 2022 152 108129 10.1016/j.optlastec.2022.108129 Open DOISearch in Google Scholar

Kotarska A, Poloczek T, Janicki D. Characterization of the structure, mechanical properties and erosive resistance of the laser cladded Inconel 625-based coatings reinforced by TiC particles. Materials. 2021;14: 2225. doi:10.3390/ma14092225. KotarskaA PoloczekT JanickiD Characterization of the structure, mechanical properties and erosive resistance of the laser cladded Inconel 625-based coatings reinforced by TiC particles Materials. 2021 14 2225 10.3390/ma14092225 Open DOISearch in Google Scholar

Kołodziejczak P, Bober M, Chmielewski T. Wear resistance comparison research of high-alloy protective coatings for power industry prepared by means of CMT cladding. Appl. Sci. 2022;12: 4568. doi:10.3390/app12094568. KołodziejczakP BoberM ChmielewskiT Wear resistance comparison research of high-alloy protective coatings for power industry prepared by means of CMT cladding Appl. Sci 2022 12 4568 10.3390/app12094568 Open DOISearch in Google Scholar

Czupryński A, Mele C. Properties of flame spraying coatings reinforced with particles of carbon nanotubes. Adv Mater Sci. 2021;21(1): 57–76. doi:10.2478/adms-2021-0005. CzupryńskiA MeleC Properties of flame spraying coatings reinforced with particles of carbon nanotubes Adv Mater Sci. 2021 21 1 57 76 10.2478/adms-2021-0005 Open DOISearch in Google Scholar

Kotarska A. The laser alloying process of ductile cast iron surface with titanium. Metals. 2021;11(2): 282. doi:10.3390/met11020282. KotarskaA The laser alloying process of ductile cast iron surface with titanium Metals. 2021 11 2 282 10.3390/met11020282 Open DOISearch in Google Scholar

Poloczek T, Janicki D, Górka J, Kotarska A. Effect of Ti and C alloyants on the microstructure of laser cladded cobalt-chromium coatings. IOP Conf Ser Mater Sci Eng. 2021;1182: 012063. doi:10.1088/1757-899X/1182/1/012063. PoloczekT JanickiD GórkaJ KotarskaA Effect of Ti and C alloyants on the microstructure of laser cladded cobalt-chromium coatings IOP Conf Ser Mater Sci Eng. 2021 1182 012063 10.1088/1757-899X/1182/1/012063 Open DOISearch in Google Scholar

Janicki D. In-situ synthesis of titanium carbide particles in and iron matrix during diode-laser surface alloying of ductile cast iron. Mater Technol. 2017;51(2): 317–21. doi:10.17222/mit.2015.198. JanickiD In-situ synthesis of titanium carbide particles in and iron matrix during diode-laser surface alloying of ductile cast iron Mater Technol. 2017 51 2 317 21 10.17222/mit.2015.198 Open DOISearch in Google Scholar

Lont A, Górka J, Janicki D, Matus K. The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere. Coatings. 2022;12(2): 227. doi:10.3390/coatings12020227. LontA GórkaJ JanickiD MatusK The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere Coatings. 2022 12 2 227 10.3390/coatings12020227 Open DOISearch in Google Scholar

Shuting S, Hanguang F, Xuelong P, Xingye G, Jian L, Yongping L, et al. Effect of liquid nitrogen cooling on grain growth and properties of laser cladding in-situ (Ti, Nb)C/Ni composite coatings. Mater Charact. 2019;152: 115–29. doi:10.1016/j.matchar.2019.04.012. ShutingS HanguangF XuelongP XingyeG JianL YongpingL Effect of liquid nitrogen cooling on grain growth and properties of laser cladding in-situ (Ti, Nb)C/Ni composite coatings Mater Charact. 2019 152 115 29 10.1016/j.matchar.2019.04.012 Open DOISearch in Google Scholar

Chen L, Zhao Y, Meng F, Yu T, Ma Z, Qu S, et al. Effect of TiC content on the microstructure and wear performance of in situ synthesized Ni-based composite coatings by laser direct energy deposition. Surf Coat Technol. 2022;444: 128678. doi:10.1016/j.surfcoat.2022.128678. ChenL ZhaoY MengF YuT MaZ QuS Effect of TiC content on the microstructure and wear performance of in situ synthesized Ni-based composite coatings by laser direct energy deposition Surf Coat Technol. 2022 444 128678 10.1016/j.surfcoat.2022.128678 Open DOISearch in Google Scholar

Gao Z, Geng H, Qiao Z, Sun B, Gao Z, Zhang C. In situ TiBX/TiX NiY/TiC reinforced Ni60 composites by laser cladding and its effect on the tribological properties. Ceram Int. 2023;49: 6409–18. doi:10.1016/j.ceramint.2022.10.087. GaoZ GengH QiaoZ SunB GaoZ ZhangC In situ TiBX/TiX NiY/TiC reinforced Ni60 composites by laser cladding and its effect on the tribological properties Ceram Int. 2023 49 6409 18 10.1016/j.ceramint.2022.10.087 Open DOISearch in Google Scholar

Wu F, Chen T, Wang H, Liu D. Effect of Mo on microstructures and wear properties in situ synthesized Ti(C,N)/Ni-based composite coatings by laser cladding. Materials. 2017;10: 1047. doi:10.3390/ma10091047. WuF ChenT WangH LiuD Effect of Mo on microstructures and wear properties in situ synthesized Ti(C,N)/Ni-based composite coatings by laser cladding Materials. 2017 10 1047 10.3390/ma10091047 Open DOISearch in Google Scholar

Muvvala G, Karmakar DP, Nath AK. In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating. J Alloys Compd. 2018;740: 545–58. doi:10.1016/j.jallcom.2017.12.364. MuvvalaG KarmakarDP NathAK In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating J Alloys Compd. 2018 740 545 58 10.1016/j.jallcom.2017.12.364 Open DOISearch in Google Scholar

ASTM International. E407-99. Standard practice for microetching metals and alloys. PA, USA; 1999. ASTM International. E407-99 Standard practice for microetching metals and alloys PA, USA 1999 Search in Google Scholar

ASTM International. G76-04. Standard test method for conducting erosion tests by solid particle impingement using gas jets. PA, USA; 2004. ASTM International. G76-04 Standard test method for conducting erosion tests by solid particle impingement using gas jets PA, USA 2004 Search in Google Scholar

Cieslak MJ, Headley TJ, Romig AD, Kollie T. A melting and solidification study of alloy 625. Metall Trans A. 1988;19A: 2319–31. doi:10.1007/BF02645056. CieslakMJ HeadleyTJ RomigAD KollieT A melting and solidification study of alloy 625 Metall Trans A. 1988 19A 2319 31 10.1007/BF02645056 Open DOISearch in Google Scholar

Cieslak MJ. The welding and solidification metallurgy of alloy 625. Weld J. 1991;70: 49–56. CieslakMJ The welding and solidification metallurgy of alloy 625 Weld J. 1991 70 49 56 Search in Google Scholar

Stachowiak GW, Batchelor AW. Engineering tribology. Oxford: Butterworth-Heinemann; 2014. p. 551–6. StachowiakGW BatchelorAW Engineering tribology Oxford Butterworth-Heinemann 2014 551 6 Search in Google Scholar

Solecka M, Kopyściański M, Kusiński J, Kopia A, Radziszewska A. Erosive wear of Inconel 625 alloy coatings deposited by CMT method. Arch Metall Mater. 2016;61(2B): 1201–6. doi:10.1515/amm-2016-0199. SoleckaM KopyściańskiM KusińskiJ KopiaA RadziszewskaA Erosive wear of Inconel 625 alloy coatings deposited by CMT method Arch Metall Mater. 2016 61 2B 1201 6 10.1515/amm-2016-0199 Open DOISearch in Google Scholar

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties