Open Access

Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology


Cite

This study explores the use of powder plasma transferred arc welding (PPTAW) as a surface layer deposition technology to form hardfaced coatings to improve upon the wear resistance of mild steel. Hardfaced layers were prepared using the PPTAW process with two different wear-resistant powders: PG 6503 (NiSiB + 60% WC) and PE 8214 (NiCrSiB + 45% WC). By varying the PPTAW process parameters of plasma gas flow rate (PGFR) and plasma arc current, hardfaced layers were prepared. Microscopic examinations, penetration tests, hardness tests, and abrasive wear resistance tests were carried out on the prepared samples. Hardfacings prepared with PG 6503 had a hardness of 46.3–48.3 HRC, while those prepared with PE 8214 had a hardness of 52.7–58.3 HRC. The microhardness of the matrix material was in the range of 573.3–893.0 HV, while that of the carbides was in the range of 2128.7–2436.3 HV. The abrasive wear resistance of the mild steel was improved after deposition of hardfaced layers by up to 5.7 times that of abrasion-resistant heat-treated steel, Hardox 400, having a nominal hardness of approximately 400 HV. The hardness and wear resistance were increased upon addition of Cr as an alloying element. Increasing the PGFR increased the hardness and wear resistance of the hardfacings, as well as increasing the number of surface cracks. Increasing the plasma transferred arc (PTA) current resulted in hardfacings with fewer cracks but lowered the wear resistance.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties