1. bookVolume 37 (2019): Issue 3 (September 2019)
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year
access type Open Access

Synthesis and characterization of binary and ternary nanocomposites based on TiO2, SiO2 and ZnO with PVA based template-free gel combustion method

Published Online: 18 Oct 2019
Volume & Issue: Volume 37 (2019) - Issue 3 (September 2019)
Page range: 426 - 436
Received: 13 Jun 2018
Accepted: 08 Nov 2018
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year

Binary and ternary nanocomposites based on TiO2, SiO2 and ZnO were synthesized by PVA-based template-free gel combustion method. The morphology and the particles sizes of the synthesized samples depended on some parameters including the initial concentrations of metal salts and PVA amount in the sol, solvent composition and solution pH. Effects of these parameters were investigated and optimized by using the Taguchi method. In the experimental design, the Taguchi L25 array was used to investigate six factors at five levels. The samples were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) specific surface areas, scanning electron microscopy (SEM). The obtained results showed that the present method can be used to synthesize TiO2/SiO2/ZnO ternary nanocomposite with an effective surface area of 0.3 m2 · g−1 and ZnO/TiO2, TiO2/SiO2, ZnO/SiO2 binary nanocomposites with an effective surface area of 234 m2 · g−1, 6 m2 · g−1 and 0.5 m2 · g−1, respectively. The ZnO/TiO2 nanocomposite which was synthesized under the following experimental conditions: 2.5 wt.% Zn salt, 2.5 wt.% Ti salt, 2.0 wt.% PVA, pH = 1 and ethanol:water ratio 30:70 was selected by the Taguchi method as an optimum sample with the smallest particles (average diameter = 50 nm).


[1] Wang L., Muhammed M., J. Mater. Chem., 9 (1999), 2871.10.1039/a907098bSearch in Google Scholar

[2] Meulenkamp E.A., J. Phys. Chem. B, 102 (1998), 5566.10.1021/jp980730hSearch in Google Scholar

[3] Song Z., Li Q., Gao L., J. Mater. Sci. Technol., 13 (1997), 321.Search in Google Scholar

[4] Zhuang J., Liu M., Liu H., Sci. China B, 52 (2009), 2125.10.1007/s11426-009-0198-5Search in Google Scholar

[5] Usui H., Mater. Lett., 63 (2009), 1489.10.1016/j.matlet.2009.03.054Search in Google Scholar

[6] Li F., Huang X., Jiang Y., Liu L., Li Z., Mater. Res. Bull., 44 (2009), 437.10.1016/j.materresbull.2008.04.024Search in Google Scholar

[7] Kim S., Fisher B., Eisler H.J., Bawendi M., J. Am. Chem. Soc., 125 (2003), 11466.10.1021/ja036174913129327Search in Google Scholar

[8] Tak Y., Hong S.J., Lee J.S., Yong K., J. Mater. Chem., 19 (2009), 5945.10.1039/b904993bSearch in Google Scholar

[9] Kim C., Choi M., Jang J., Catal. Commun., 11 (2010), 378.10.1016/j.catcom.2009.11.005Search in Google Scholar

[10] Rahman I.A., Padvettan V., J. Nanomater., (2012), 1. DOI: 10.1155/2012/132424.10.1155/2012/132424Search in Google Scholar

[11] Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W., Chem. Rev., 95 (1995), 69.10.1021/cr00033a004Search in Google Scholar

[12] Wang C., Ao Y., Wang P., Hou J., Qian J., Zhang S., J. Hazard. Mater., 178 (2010), 517.10.1016/j.jhazmat.2010.01.111Search in Google Scholar

[13] Wang C., Ao Y., Wang P., Hou J., Qian J., Mater. Lett., 64 (2010), 1003.10.1016/j.matlet.2010.02.013Open DOISearch in Google Scholar

[14] Arai Y., Tanaka K., Khlaifat A.L., J. Mol. Catal. A: Chem., 243 (2006), 85.10.1016/j.molcata.2005.08.016Search in Google Scholar

[15] Biswas S., Hossain M.F., Takahashi T., Kubota Y., Fujishima A., Thin Solid Films, 516 (2008), 7313.10.1016/j.tsf.2008.01.006Search in Google Scholar

[16] Houšková V., Štengl V., Bakardjieva S., Murafa N., J. Phys. Chem. Solids, 69 (2008), 1623.10.1016/j.jpcs.2007.11.029Search in Google Scholar

[17] Lee H.C., Hwang W.S., Appl. Surf. Sci., 253 (2006), 1889.10.1016/j.apsusc.2006.03.036Search in Google Scholar

[18] Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E., Hidaka H., J. Photochem. Photobiol. A: Chem., 85 (1995), 247.10.1016/1010-6030(94)03906-BSearch in Google Scholar

[19] Liao D.L., Badour C.A., Liao B.Q., J. Photochem. Photobiol. A: Chem., 194 (2008) 11.Search in Google Scholar

[20] Wang J., Jiang Z., Zhang L., Kang P., Xie Y., Lv Y., Zhang X., Ultrason. Sonochem., 16 (2009), 225.10.1016/j.ultsonch.2008.08.00518842448Open DOISearch in Google Scholar

[21] Xu X., Wang J., Tian J., Wang X., Dai J., Liu X., Ceram. Int., 37 (2011), 2201.10.1016/j.ceramint.2011.03.067Search in Google Scholar

[22] Janitabar-Darzi S., Mahjoub A.R., J. Alloy. Compd., 486 (2009), 805.10.1016/j.jallcom.2009.07.071Search in Google Scholar

[23] Giesche H., J. Eur. Ceram. Soc., 14 (1994), 205.10.1016/0955-2219(94)90088-4Open DOISearch in Google Scholar

[24] Venkatathri N., Bull. Mater. Sci., 30 (2007) 615.10.1007/s12034-007-0097-3Open DOISearch in Google Scholar

[25] Stöber W., Fink A., Bohn E., J. Colloid Interface Sci., 26 (1968), 62.10.1016/0021-9797(68)90272-5Search in Google Scholar

[26] Lindberg R., Sjöblom J., Sundholm G., Colloids Surf. A, 99 (1995), 79.10.1016/0927-7757(95)03117-VSearch in Google Scholar

[27] Chan Y., Zimmer J.P., Stroh M., Steckel J.S., Jain R.K., Bawendi M.G., Adv. Mater., 16 (2004), 2092.10.1002/adma.200400237Search in Google Scholar

[28] Epifani M., Giannini C., Tapfer L., Vasanelli L., J. Am. Ceram. Soc., 83 (2000), 2385.10.1111/j.1151-2916.2000.tb01566.xSearch in Google Scholar

[29] Gonella F., Mattei G., Mazzoldi P., Sada C., Battagli N.G., Cattaruzza E., Appl. Phys. Lett., 75 (1999) 55.10.1063/1.124275Search in Google Scholar

[30] Liz-Marzán L.M., Giersig M., Mulvaney P., Langmuir, 12 (1996), 4329.10.1021/la9601871Search in Google Scholar

[31] He J., Ichinose I., Kunitake T., Nakao A., Langmuir, 18 (2002), 10005.10.1021/la0260584Search in Google Scholar

[32] Song J.H, Atay T., Shi S., Urabe H., V. Nurmikko A., Nano Lett., 15 (2005), 1557.10.1021/nl050813r16089488Search in Google Scholar

[33] Shter G.E., Behar-Levy H., Gelman V., Grader G.S., Avnir D., Adv. Funct. Mater., 17 (2007), 913.10.1002/adfm.200600482Open DOISearch in Google Scholar

[34] Traversa E., di Vona M.L., Licoccia S., Sacerdoti M., Carotta M.C., Crema L., Martinelli G., J. Sol-Gel Sci. Technol., 22 (2001), 167.10.1023/A:1011236908751Search in Google Scholar

[35] Karami H., Amifar A., Tavallali H., Namdae Z.A., J. Clust. Sci., 21 (2011), 1.Search in Google Scholar

[36] Sayilkan F., Asilturk M., Sener S., Erdemoglu S., Erdemoglu M., Sayilkan H., Turk. J. Chem., 31 (2007), 211.Search in Google Scholar

[37] Calleja G., Serrano D.P., Sanz R., Pizarro P., Microporous Mesoporous Mater., 111 (2008), 429.10.1016/j.micromeso.2007.08.021Search in Google Scholar

[38] Garzella C., Comini E., Bontempil E., Deperol L.E., Frigeri C., Sberveglieri G., Mater. Res. Soc. Symp. Proc., 638 (2001), 111.10.1557/PROC-638-F5.39.1Search in Google Scholar

[39] Wang Z., Helmersson U., Kall P., Thin Solid Films, 405 (2002), 50.10.1016/S0040-6090(01)01767-9Search in Google Scholar

[40] Ivanova T., Harizanova A., Surtchev M., Mater. Lett., 55 (2002), 327.10.1016/S0167-577X(02)00387-7Open DOISearch in Google Scholar

[41] Dohshi S., Takeuchi M., Anpo M., Catal. Today, 85 (2003), 75.10.1016/S0920-5861(03)00387-0Search in Google Scholar

[42] Gonçalves R.R., Messaddeq Y., Atik M., Ribeiro S.J., Mater. Res., 2 (1999), 11.10.1590/S1516-14391999000100003Search in Google Scholar

[43] Nishide T., Sato M., Hara H., J. Mater. Sci., 35 (2000), 465.10.1023/A:1004731804075Open DOISearch in Google Scholar

[44] Cabbrera S., El Haskouri J., Beltran-Porter A., Beltran-Porter D., Marcos M.D., Amoros P., J. Solid State Sci., 2 (2000) 513.Search in Google Scholar

[45] Rostamkhani F., Karami H., Ghasemi A., Desalin. Water Treat., 60 (2017), 319.10.5004/dwt.2017.0433Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo