Open Access

Applications of nanomaterials for future food security: challenges and prospects


[1] Jiang, B., Li, C., Dag, O., Abe, H., Takei, T., Imai, T., Hossain, M.S.A., Islam, M.T., Wood, K, Henzie, J., Yamauchi, Y. 2017. Mesoporous metallic rhodium nanoparticles. Nature Communications, 8,15581.10.1038/ncomms15581Search in Google Scholar

[2] Auffan, M., Rose, J., Bottero, JY., Lowry, G.V., Jolivet, J.P., Wiesner, M.R. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634.10.1038/nnano.2009.24219809453Open DOISearch in Google Scholar

[3] Ghormade, V., Deshpande, M.V., Paknikar, K.M. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29 (6), 792–803.2172974610.1016/j.biotechadv.2011.06.00721729746Search in Google Scholar

[4] Ditta, A. 2012. How helpful is nanotechnology in agriculture? Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3), 033002.10.1088/2043-6262/3/3/033002Search in Google Scholar

[5] Nakache, E., Poulain, N., Candau, F., Orecchioni, A.M., Irache, J.M. 1999. Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS, editor. Handbook of Nanostructured Materials and Nanotechnology. New York, NY, USA: Academic Press.10.1016/B978-012513760-7/50063-0Search in Google Scholar

[6] Parisi, C., Vigani, M., Rodríguez-Cerezo, E., 2015. Agricultural nanotechnologies: what are the current possibilities? Nano Today, 10(2), 124–127.10.1016/j.nantod.2014.09.009Search in Google Scholar

[7] Godfray, H.C., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. 2010. Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.10.1126/science.1185383Search in Google Scholar

[8] Jones, J.D., Witek, K., Verweij, W., Jupe, F., Cooke, D., Dorling, S., Tomlinson, L., Smoker, M., Perkins, S., Foster, S. 2014. Elevating crop disease resistance with cloned genes. Philosophical Transactions of The Royal Society B Biological Sciences, 369, 20130087.10.1098/rstb.2013.0087Search in Google Scholar

[9] Haque, E., Taniguchi, H., Hassan, M.M., Bhowmik, P., Karim, M.R., Smiech, M., ´Zhao, K., Rahman, M. Islam, T. 2018. Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Frontiers in Plant Science, 9, 617.10.3389/fpls.2018.00617595232729868073Open DOISearch in Google Scholar

[10] Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B., Zeng, Z. 2017. Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry, 66 (26), 6504–6512.10.1021/acs.jafc.7b02004Search in Google Scholar

[11] Ditta, A., Arshad, M. 2016. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnology Review, 2(5), 209–229.10.1515/ntrev-2015-0060Search in Google Scholar

[12] Kah, M., Kookana, R.S., Gogos, A., Bucheli, T.D. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13, 677–684.10.1038/s41565-018-0131-1Search in Google Scholar

[13] Si, Y., Zhang, Z., Wu, W., Fu, Q., Huang, K., Nitin, N., Ding, B., Sun, G. 2018. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Science Advances, 4(3), eaar5931.10.1126/sciadv.aar5931Search in Google Scholar

[14] Cunningham, F.J., Goh, N.S., Demirer, G.S., Matos, J.L., Landry, M.P. 2018. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology, 36 (9), 882–897.10.1016/j.tibtech.2018.03.00929703583Open DOISearch in Google Scholar

[15] Doudna, J.A., Charpentier, E. 2014. The new frontiers of genome engineering with CRISPR-Cas9. Science (November 28) 346, 1077-1087.10.1126/science.1258096Search in Google Scholar

[16] Khan, J.H., Lin, J., Young, C., Matsagar, B.M., Wu, K.C., Dhepe, P.L., Islam, M.T., Rahman, M., Shrestha, L.K., Alshehri, S.M., Ahamad, T. 2018. High surface area nanoporous carbon derived from Bangladeshi jute. Materials Chemistry and Physics, 216(1), 491–495.10.1016/j.matchemphys.2018.05.082Search in Google Scholar

[17] Islam, M.S., Akter, N., Rahman, M.M., Shi, C., Islam, M.T., Zeng, H., Azam, M.S. 2018. Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustainable Chemistry & Engineering, 6(7), 9178–9188.10.1021/acssuschemeng.8b01523Search in Google Scholar

[18] Islam, M.T., Croll, D., Gladieux, P., Soanes, D.M., Persoons, A., Bhattacharjee, P., Hossain, M.S., Gupta, D.R., Rahman, M.M., Mahboob, M.G., Cook, N., Salam, M.U., Surovy, M.S., Sancho, V. B., Maciel, J.L.N., Júnior, A.N., Castroagudín, V.L., Reges, J.T.A., Ceresini, P.C., Ravel, S., Kellner, R., Fournier, E., Thareau, D., Lebrun, M.H., McDonald, B.A., Stitt, T., Swan, D., Talbot, N.J., Saunders, D.G.O., Win, J., Kamoun, S. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology 14, 84.10.1186/s12915-016-0309-7Search in Google Scholar