Open Access

Study on Mass and Linear Attenuation Coefficients of PMMA as Human Tissue-Equivalent Material


Cite

1. Misra, R., Acharya, S., & Sahoo, S.K. (2010). Cancer Nanotechnology: Application of Nanotechnology in Cancer Therapy. Drug Discov Today, 15, 842–850.10.1016/j.drudis.2010.08.006 Search in Google Scholar

2. Verhaegen, F., & Seuntjens, J. (2003). Monte Carlo Modelling of External Radiotherapy Photon Beams. Phys Med Biol, 48, 107–164.10.1088/0031-9155/48/21/R01 Search in Google Scholar

3. Palmer, A., Bradley, D., & Nisbet, A. (2012). Physics-Aspects of Dose Accuracy in High Dose Rate (HDR) Brachytherapy: Source Dosimetry, Treatment Planning, Equipment Performance and In Vivo Verification Techniques. J Contemp Brachytherapy, 4, 81–91.10.5114/jcb.2012.29364 Search in Google Scholar

4. Yohannes, I., Kolditz, D., & Langner O. (2012). A Formulation of Tissue-and Water-Equivalent Materials Using the Stoichiometric Analysis Method for CT-Number Calibration in Radiotherapy Treatment Planning. Phys Med Biol, 57, 1173–1190.10.1088/0031-9155/57/5/1173 Search in Google Scholar

5. Yazdani, M., & Mowlavi, A.A. (2007). Determining TG-43 Brachytherapy Dosimetry Parameters and Dose Distribution for a 131Cs Source Model CS-1. Iran J Radiat Res, 5, 85–90. Search in Google Scholar

6. Chandola, R.M., Tiwari, S., & Kowar, M.K. (2010). Effect of In-Homogeneities and Source Position on Dose Distribution of Nucletron High Dose Rate Ir-192 Brachytherapy Source by Monte Carlo Simulation. J Cancer Res Ther, 6, 54–57.10.4103/0973-1482.63567 Search in Google Scholar

7. Hsu, S.M, Wu, C.H., & Lee, J.H. (2012). A Study on the Dose Distributions in Various Materials from an Ir-192 HDR Brachy-therapy Source. PLoS One, 7, e44528.10.1371/journal.pone.0044528 Search in Google Scholar

8. ICRU Report No. 44. (1989). Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU, Bethesda. Search in Google Scholar

9. Fadhil, F., Abdalsattar, H., & Rajaa, M. (2017). Calculating the X-ray Attenuation Coefficients of Gelatin as Human Tissue Substitute. Austr J Bas and Appl Sci, 21–29. Search in Google Scholar

10. Kurudirek, M., & Özdemir, Y. (2011). Energy Absorption and Exposure Buildup Factors for Some Polymers and Tissue Substitute Materials: Photon Energy, Penetration Depth and Chemical Composition Dependence. J Radiol Prot, 31 (1), 117–28.10.1088/0952-4746/31/1/008 Search in Google Scholar

11. Gupta, S., & Sidhu, G.S. (2014). Computation of Mass Attenuation Coefficient, Energy Absorption and Exposure Build-Up Factors for Teeth in the Energy Range 0.015–15 MeV up to 40 mfp. IJETR, 2 (7). Search in Google Scholar

12. Hopkins, D.N. (2010). Determination of the Linear Attenuation Coefficient and Buildup Factors of MCP-96 Alloy for Use in Tissue Compensation and Radiation Protection [Master Thesis]. USA: Ball State University Muncie. Search in Google Scholar

13. Hubbell, J.H, & Seltzer, S.M. (1997). Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.03) (online). Available at http://physics.nist.gov/xaamdi. National Institute of Standards and Technology, Gaithersburg, MD. Originally published as NISTIR 5632, National Institute of Standards and Technology, Gaithersburg, MD. Search in Google Scholar

14. Gerward, L., Guilbert, N., Jensen, K.B., & Levring H. (2001). X-ray Absorption in Matter. Reengineering XCOM. Rad Phys Chem, 60, 23–24.10.1016/S0969-806X(00)00324-8 Search in Google Scholar

15. Hubbell, J.H., & Seltzer, S.M. (1995). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z ¼ 1 to 92 and 48 Additional Substances of Dosimetric Interest. Gaithersburg: National Institute of Standards and Technology.10.6028/NIST.IR.5632 Search in Google Scholar

16. ICRP. (2003). Basic Anatomical and Physiological Data for Use in Radiological Protection (vol. 89). Reference values. ICRP publication. Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics