[Aladjadjiyan A. 2007. The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture 8(3): 369–380.]Search in Google Scholar
[Aliverdi A., Parsa, M., Hammami H. 2015. Increased soyabean-rhizobium symbiosis by magnetically treated water. Biological Agriculture and Horticulture 31(3): 167–176. DOI: 10.1080/01448765.2014.996253.10.1080/01448765.2014.996253]Search in Google Scholar
[Al-Khazan M., Abdullatif, B.M., Al-Assaf N. 2011. Effects of magnetically treated water on water status, chlorophyll pigments and some elements content of Jojoba (Simmondsia chinensis L.) at different growth stages. African Journal of Environmental Science and Technology 5: 722–731. DOI: 10.5897/ajest11.117.]Search in Google Scholar
[Akhtar M.S., Oki, Y., Adachi T. 2009. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment. I. Differential growth response, P-efficiency characteristics and P-remobilization. Journal of Integrative Plant Biology 51(11): 1008–1023. DOI: 10.1111/j.1744-7909.2009.00874.x.10.1111/j.1744-7909.2009.00874.x19903223]Search in Google Scholar
[Augé R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42. DOI: 10.1007/s005720100097.10.1007/s005720100097]Search in Google Scholar
[Belyavskaya N.A. 2004. Biological effects due to weak magnetic field on plants. Advances in Space Research 34: 1566–1574. DOI: 10.1016/j.asr.2004.01.021.10.1016/j.asr.2004.01.02115880893]Search in Google Scholar
[Carter G.A., Knapp A.K. 2001. Leaf optical properties in highest plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany 88(4): 677–684. DOI: 10.2307/2657068.10.2307/2657068]Search in Google Scholar
[Chen Y.-Y., Hu C.-Y., Xiao J.-X. 2014. Effects of arbuscular mycorrhizal inoculation on the growth, zinc distribution and photosynthesis of two citrus cultivars grown in low-zinc soil. Trees 28: 1427–1436. DOI: 10.1007/s00468-014-1046-6.10.1007/s00468-014-1046-6]Search in Google Scholar
[Childers D.L., Corman J., Edwards M., Elser J.J. 2011. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Bioscience 61: 117–124. DOI: 10.1525/bio.2011.61.2.6.10.1525/bio.2011.61.2.6]Search in Google Scholar
[Colla G., Rouphael Y., Cardarelli M., Tullio M., Rivera C.M., Rea E. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils 44: 501–509. DOI: 10.1007/s00374-007-0232-8.10.1007/s00374-007-0232-8]Search in Google Scholar
[Cordell D., Drangert J.-O., White S. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change 19: 292–305. DOI: 10.1016/j.gloenvcha.2008.10.009.10.1016/j.gloenvcha.2008.10.009]Search in Google Scholar
[Demir S. 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology 28: 85–90.]Search in Google Scholar
[Feng G., Zhang F.S., Li X.L., Tian C.Y., Tang C., Rengel Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185–190. DOI: 10.1007/s00572-002-0170-0.10.1007/s00572-002-0170-012189473]Search in Google Scholar
[Grant C.A., Flaten D.N., Tomasiewicz D.J., Sheppard S.C. 2001. The importance of early season phosphorus nutrition. Canadian Journal of Plant Science 81(2): 211–224. DOI: 10.4141/p00-093.10.4141/P00-093]Search in Google Scholar
[Gregory P.J. 2006. Plant roots. Growth, activity and interaction with soils. Blackwell Publishing, 318 p. DOI: 10.1002/9780470995563.10.1002/9780470995563]Search in Google Scholar
[Ghanati F., Mohamadalikhani S., Soleimani M., Afzalzadeh R., Hajnorouzi A. 2015. Change of growth pattern, metabolism, and quality and quantity of maize plants after irrigation with magnetically treated water. Electromagnetic Biology and Medicine 34(3): 211–215. DOI: 10.3109/15368378.2015.1076453.10.3109/15368378.2015.1076453]Search in Google Scholar
[Hajnorouzi A., Vaezzadeh M., Ghanati F., Jamnezhad H., Nahidian B. 2011. Growth promotion and a decrease of oxidative stress in maize seedlings by a combination of geomagnetic and weak electromagnetic fields. Journal of Plant Physiology 168: 1123–1128. DOI: 10.1016/j.jplph.2010.12.003.10.1016/j.jplph.2010.12.003]Search in Google Scholar
[Hilal M.H., Shata S.M., Abdel-Dayem A.A., Hilal M.M. 2002. Application of magnetic technologies in desert agriculture. III. Effect of magnetized water on yield and uptake of certain elements by citrus in relation to nutrients mobilization in soil. Egyptian Journal of Soil Science 42(1): 43–56.]Search in Google Scholar
[Jokubauskaitė I., Karčauskienė D., Antanaitis Š., Mažvila J., Šlepetienė A., Končius D., Piaulokaitė-Motuzienė L. 2015. The distribution of phosphorus forms and fractions in retisol under different soil liming management. Zemdirbyste–Agriculture 102(3): 251–256. DOI: 10.13080/z-a.2015.102.032.10.13080/z-a.2015.102.032]Search in Google Scholar
[Lichtenthaler H.K., Buschmann C. 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry 1(1); F4.3; 8 p. DOI: 10.1002/0471142913.faf0403s01.10.1002/0471142913.faf0403s01]Search in Google Scholar
[Lin I.J., Yotvat J. 1990. Exposure of irrigation and drinking water to a magnetic field with controlled power and direction. Journal of Magnetism and Magnetic Materials 83: 525–526. DOI: 10.1016/0304-8853(90)90611-s.10.1016/0304-8853(90)90611-S]Search in Google Scholar
[MacDonald G.K., Bennett E.M., Potter P.A., Ramankutty N. 2011. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences 108: 3086–3091. DOI: 10.1073/pnas.1010808108.10.1073/pnas.1010808108304109621282605]Search in Google Scholar
[Machado C.T. de T., Furlani Â.M.C. 2004. Kinetics of phosphorus uptake and root morphology of local and improved varieties of maize. Scientia Agricola 61: 69–76. DOI: 10.1590/s0103-90162004000100012.10.1590/S0103-90162004000100012]Search in Google Scholar
[Maheshwari B.L., Grewal H.S. 2009. Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agricultural Water Management 96: 1229–36. DOI: 10.1016/j.agwat.2009.03.016.10.1016/j.agwat.2009.03.016]Search in Google Scholar
[Miransari M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology 12: 563–569. DOI: 10.1111/j.1438-8677.2009.00308.x.10.1111/j.1438-8677.2009.00308.x20636898]Search in Google Scholar
[Pang X.-F., Deng B. 2008. The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Physica B 403: 3571–3577. DOI: 10.1016/j.physb.2008.05.032.10.1016/j.physb.2008.05.032]Search in Google Scholar
[Podleśny J., Pietruszewski S., Podleśna A. 2004. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions. International Agrophysics 18: 65–71.]Search in Google Scholar
[Porcel R., Redondo-Gómez S., Mateos-Naranjo E., Aroca R., Garcia R., Ruiz-Lozano J.M. 2015. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant Physiology 185: 75–83. DOI: 10.1016/j.jplph.2015.07.006.10.1016/j.jplph.2015.07.00626291919]Search in Google Scholar
[Rãcuciu M., Creangã D., Horga I. 2008. Plant growth under static magnetic field influence. Romanian Journal of Physics 53(1–2): 353–359.]Search in Google Scholar
[Sadeghipour O., Aghaei P. 2013. Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. Journal of Biodiversity and Environmental Sciences 3(1): 37–43.]Search in Google Scholar
[Sannazzaro A.I., Ruiz O.A., Albertó E.O., Menéndez A.B. 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and Soil 285: 279–287. DOI: 10.1007/s11104-006-9015-5.10.1007/s11104-006-9015-5]Search in Google Scholar
[Shabani E., Bolandnazar S., Tabatabaei S.J., Najafi N., Alizadeh-Salteh S. 2017. Motivate the production of pharmaceutical compounds in Ocimum basilicum by magnetic phosphorus solution and arbuscular mycorrhizal fungi. Journal of Biodiversity and Environmental Sciences 11(3): 31–45.]Search in Google Scholar
[Shabani E., Bolandnazar S., Tabatabaei S.J., Najafi N., Alizadeh-Salteh S., Rouphael Y. 2018. Stimulation in the movement and uptake of phosphorus in response to magnetic P solution and arbuscular mycorrhizal fungi in Ocimum basilicum. Journal of Plant Nutrition 41(13): 1662–1673. DOI: 10.1080/01904167.2018.1458872.10.1080/01904167.2018.1458872]Search in Google Scholar
[Shen J., Yuan L., Zhang J., Li H., Bai Z., Chen X. et al. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology 156: 997–1005. DOI: 10.1104/pp.111.175232.10.1104/pp.111.175232313593021571668]Search in Google Scholar
[Sheng M., Tang M., Chen H., Yang B., Zhang F., Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7): 287–296. DOI: 10.1007/s00572-008-0180-7.10.1007/s00572-008-0180-718584217]Search in Google Scholar
[Siddiqi M.Y., Glass A.D.M. 1981. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. Journal of Plant Nutrition 4(3): 289–302. DOI: 10.1080/01904168109362919.10.1080/01904168109362919]Search in Google Scholar
[Soltani F., Kashi A., Arghavani M. 2006. Effect of magnetic field on Asparagus officinalis L. seed germination and seedling growth. Seed Science and Technology 34: 349–353. DOI: 10.15258/sst.2006.34.210.]Search in Google Scholar
[Turker M., Temirci C., Battal P., Erez M.E. 2007. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyton, Annales Rei Botanicae 46: 271–284.]Search in Google Scholar
[Zarei M., Saleh-Rastin N., Alikhani H.A., Aliasgharzadeh N. 2006. Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. Journal of Plant Nutrition 29: 1509–1522. DOI: 10.1080/01904160600837667.10.1080/01904160600837667]Search in Google Scholar
[Zhang J., Zhou K., Wang L., Gao M. 2014. Extremely low-frequency magnetic fields affect pigment production of Monascus purpureus in liquid-state fermentation. European Food Research and Technology 238(1): 157–62. DOI: 10.1007/s00217-013-2096-5.10.1007/s00217-013-2096-5]Search in Google Scholar