[Ahmed M., Hassana F., Asif M. 2014. Amelioration of drought in sorghum (Sorghum bicolor L.) by silicon. Communications in Soil Science and Plant Analysis 45: 470–486. DOI: 10.1080/00103624.2013.863907.10.1080/00103624.2013.863907]Open DOISearch in Google Scholar
[Al-aghabary K., Zhu Z., Shi Q. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition 27: 2101–2115. DOI: 10.1081/pln-200034641.10.1081/pln-200034641]Open DOISearch in Google Scholar
[Ali E.F., Hassan F.A.S. 2016. Supplemental effects of silicon nutrition on growth, quality and some physiological characters of potted chrysanthemum grown in greenhouse. Acta Scientiarum Polonorum, Hortorum Cultus 15: 85–98.]Search in Google Scholar
[Bao A.-K., Wang S.-M., Wu G.-Q., Xi J.-J., Zhang J.-L., Wang C.-M. 2009. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science 176: 232–240. DOI: 10.1016/j.plantsci.2008.10.009.10.1016/j.plantsci.2008.10.009]Open DOISearch in Google Scholar
[Bradford M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–258. DOI: 10.1016/0003-2697(76)90527-3.10.1016/0003-2697(76)90527-3]Open DOISearch in Google Scholar
[CBI 2017. Exporting roses to the Netherlands. Centre for the Promotion of Imports from developing countries, Netherlands. http://www.cbi.eu/market-information/cut-flowers-foliage/roses/netherlands/]Search in Google Scholar
[van Doorn W.G. 1997. Water relations of cut flowers. Horticultural Reviews 18: 1–85. DOI: 10.1002/9780470650608.ch1.10.1002/9780470650608.ch1]Open DOISearch in Google Scholar
[El-Serafy R.S. 2015. Effect of silicon and calcium on productivity and flower quality of carnation. PhD Thesis. Faculty of Agriculture, Tanta University, Egypt, pp. 93–101.]Search in Google Scholar
[El-Serafy R.S., El-Sheshtawy A.A. 2017. Improving seed germination of Althaea rosea L. under salt stress by seed soaking with silicon and nano silicon. Egyptian Journal of Plant Breeding 21: 764–777.]Search in Google Scholar
[Galati V.C., Marques K.M., Morgado C.M.A., Muniz A.C.C., Filho A.B.C., Mattiuz B. 2015. Silicon in the turgidity maintenance of American lettuce. African Journal of Agricultural Research 51: 4699–4705. DOI: 10.5897/ajar2015.10196.10.5897/ajar2015.10196]Open DOISearch in Google Scholar
[Halevy A., Mayak S. 1979. Senescence and postharvest physiology of cut flowers – Part 1. Horticultural Reviews 1: 204–236. DOI: 10.1002/9781118060742.ch5.10.1002/9781118060742.ch5]Open DOISearch in Google Scholar
[Hammerschmidt R., Nuckles E.M., Kuć J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology 20: 73–82. DOI: 10.1016/0048-4059(82)90025-x.10.1016/0048-4059(82)90025-x]Open DOISearch in Google Scholar
[Hassan F.A.S., Ali E.F., El-Deeb B. 2014. Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Scientia Horticulturae 179: 340–348. DOI: 10.1016/j.scienta.2014.09.053.10.1016/j.scienta.2014.09.053]Open DOISearch in Google Scholar
[He S., Joyce D.C., Irving D.E., Faragher J.D. 2006. Stem end blockage in cut Grevillea ‘Crimson Yul-lo’ inflorescences. Postharvest Biology and Technology 41: 78–84. DOI: 10.1016/j.postharvbio.2006.03.002.10.1016/j.postharvbio.2006.03.002]Open DOISearch in Google Scholar
[Herbert D., Phipps P.J., Strange R.E. 1971. Chemical analysis of microbial cells. Methods in Microbiology 5B: 209–344. DOI: 10.1016/s0580-9517(08)70641-x.10.1016/s0580-9517(08)70641-x]Open DOISearch in Google Scholar
[Hodson M.J., Sangster A.G. 1988. Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). I. Scanning electron microscopy and light microscopy. Canadian Journal of Botany 66: 281–287. DOI: 10.1139/b88-121.10.1139/b88-121]Open DOISearch in Google Scholar
[Jamali B., Rahemi M. 2011. Carnation flowers senescence as influenced by nickel, cobalt and silicon. Journal of Biological and Environmental Sciences 5: 147–152.]Search in Google Scholar
[Kazemi M., Asadi M., Aghdasi S. 2012a. Postharvest life of cut lisianthus flowers as affected by silicon, malic acid and acetylsalicylic acid. Research Journal of Soil Biology 4: 15–20. DOI: 10.3923/rjsb.2012.15.20.10.3923/rjsb.2012.15.20]Open DOISearch in Google Scholar
[Kazemi M., Gholami M., Bahmanipour F. 2012b. Effect of silicon and acetylsalicylic acid on antioxidant activity, membrane stability and ACC-oxidase activity in relation to vase life of carnation cut flowers. Biotechnology 11: 87–90. DOI: 10.3923/biotech.2012.87.90.10.3923/biotech.2012.87.90]Open DOISearch in Google Scholar
[Kazemi M., Gholami M., Hassanvand F. 2012c. Effects of silicon on antioxidative defense system and membrane lipid peroxidation in gerbera cut flower. Asian Journal of Biochemistry 7: 171–176. DOI: 10.3923/ajb.2012.171.176.10.3923/ajb.2012.171.176]Open DOISearch in Google Scholar
[Li W.-B., Shi X.-H., Wang H., Zhang F.-S. 2004. Effects of silicon on rice leaves resistance to ultraviolet-B. Acta Botanica Sinica 46: 691–697.]Search in Google Scholar
[Liang Y.C., Sun W.C., Si J., Römheld V. 2005. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology 54: 678–685. DOI: 10.1111/j.1365-3059.2005.01246.x.10.1111/j.1365-3059.2005.01246.x]Open DOISearch in Google Scholar
[Liu J., Ratnayake K., Joyce D.C., He S., Zhang Z. 2012. Effects of three different nano-silver formulations on cut Acacia holosericea vase life. Postharvest Biology and Technology 66: 8–15. DOI: 10.1016/j.postharvbio.2011.11.005.10.1016/j.postharvbio.2011.11.005]Open DOISearch in Google Scholar
[Ma J.F., Takahashi E. 2002. Soil, fertilizer, and plant silicon research in Japan. Elsevier, 294 p.10.1016/B978-044451166-9/50009-9]Search in Google Scholar
[Malik C.P., Singh M.B. 1980. Plant enzymology and histo-enzymology. Kalyani Publishers, India, 434 p.]Search in Google Scholar
[McDonald S., Prenzler P.D., Antolovich M., Robards K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chemistry 73: 73–74. DOI: 10.1016/s0308-8146(00)00288-0.10.1016/s0308-8146(00)00288-0]Open DOISearch in Google Scholar
[Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar D.S. 2010. Nanoparticulate material delivery to plants. Plant Science 179: 154–163. DOI: 10.1016/j.plantsci.2010.04.012.10.1016/j.plantsci.2010.04.012]Open DOISearch in Google Scholar
[Pandey H.C., Baig M.J., Chandra A., Bhatt R.K. 2010. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena. Journal of Environmental Biology 31: 435–440.]Search in Google Scholar
[Peever T.L., Higgins V.J. 1989. Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiology 90: 867–875. DOI: 10.1104/pp.90.3.867.10.1104/pp.90.3.867106181316666890]Open DOISearch in Google Scholar
[Sairam R.K., Deshmukh P.S., Shukla D.S. 1997. Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science 178: 171–178. DOI: 10.1111/j.1439-037x.1997.tb00486.x.10.1111/j.1439-037x.1997.tb00486.x]Open DOISearch in Google Scholar
[Shah R., Kathad H., Sheth R., Sheth N. 2010. In vitro antioxidant activity of roots of Tephrosia purpurea Linn. International Journal of Pharmacy and Pharmaceutical Sciences 2: 30–33.]Search in Google Scholar
[Shetty R., Fretté X., Jensen B., Shetty N.P., Jensen J.D., Jørgensen H.J.L. et al. 2011. Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiology 157: 2194–2205. DOI: 10.1104/pp.111.185215.10.1104/pp.111.185215332717622021421]Open DOISearch in Google Scholar
[Shi Q., Bao Y., Zhu Y., He Y., Qian Q., Yu J. 2005. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66: 1551–1559. DOI: 10.1016/j.phytochem.2005.05.006.10.1016/j.phytochem.2005.05.00615963540]Open DOISearch in Google Scholar
[Snyder G.H., Matichenkov V.V., Datnoff L.E. 2006. Silicon. In: Barker A.V., Pilbeam D.J. (Eds.), Handbook of Plant Nutrition. CRC Press, USA, pp. 551–568.]Search in Google Scholar
[Sperry J.S., Hacke U.G., Oren R., Comstock J.P. 2002. Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment 25: 251–263. DOI: 10.1046/j.0016-8025.2001.00799.x.10.1046/j.0016-8025.2001.00799.x11841668]Open DOISearch in Google Scholar
[Waller R.A., Duncan D.B. 1969. A Bayes rule for the symmetric multiple comparisons problem. Journal of the American Statistical Association 64: 1484–1503. DOI: 10.2307/2286085.10.2307/2286085]Open DOISearch in Google Scholar
[Wang J., Naser N. 1994. Improved performance of carbon paste amperometric biosensors through the incorporation of fumed silica. Electroanalysis 6: 571–575. DOI: 10.1002/elan.1140060707.10.1002/elan.1140060707]Open DOISearch in Google Scholar
[Weatherley P.E. 1950. Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytologist 49: 81–97. DOI: 10.1111/j.1469-8137.1950.tb05146.x.10.1111/j.1469-8137.1950.tb05146.x]Open DOISearch in Google Scholar
[Yagi M.I., Elgemaby M.N.A., Ismael M.I.A., Almubarak M.A.A. 2014. Prolonging of the vase life of Gerbera jamesonii treatment with sucrose before and during simulated transport. International Journal of Sciences: Basic and Applied Research 18: 254–262.]Search in Google Scholar