[Baninasab B. 2009. Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Scientia Horticulturae 121: 144–148. DOI: 10.1016/j.scienta.2009.01.028.10.1016/j.scienta.2009.01.028]Open DOISearch in Google Scholar
[Bernacchi C.J., Bagley J.E., Serbin S.P., Ruiz-Vera U.M., Rosenthal D.M., VanLoocke A. 2013. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell and Environment 36: 1641–1657. DOI: 10.1111/pce.12118.10.1111/pce.12118]Open DOISearch in Google Scholar
[Cai Y.-F., Li S.-F., Li S.-F., Xie W.-J., Song J. 2014. How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments? Botanical Studies 55; 36, 9 p. DOI: 10.1186/1999-3110-55-36.10.1186/1999-3110-55-36]Open DOISearch in Google Scholar
[Conover C.A. 1994. Angel-Wing begonia growth and water requirements affected by Paclobutrazol. Apopka Research Report RH-94-4. University of Florida, Institute of Food and Agricultural Sciences. https://mrec.ifas.ufl.edu/foliage/resrpts/rh_94_4.htm]Search in Google Scholar
[Cown D., Marshall H., Silcock P., Meason D. 2013. Sawn timber grade recovery from a planted coast redwood stand growing in New Zealand. New Zealand Journal of Forestry Science 43; 8, 11 p. DOI: 10.1186/1179-5395-43-8.10.1186/1179-5395-43-8]Open DOISearch in Google Scholar
[Davis T.D., Curry E.A., Steffens G.L. 1991. Chemical regulation of vegetative growth. Critical Reviews in Plant Sciences Sci. 10: 151–188. DOI: 10.1080/07352689109382310.10.1080/07352689109382310]Search in Google Scholar
[Dwivedi S.K., Arora A., Kumar S. 2017. Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat geno-types. Photosynthetica 55: 351–359. DOI: 10.1007/s11099-016-0652-5.10.1007/s11099-016-0652-5]Open DOISearch in Google Scholar
[Elanchezhian R., Haris A.A., Kumar S., Singh S.S. 2015. Positive impact of paclobutrazol on gas exchange, chlorophyll fluorescence and yield parameters under submergence stress in rice. Indian Journal of Plant Physiology 20: 111–115. DOI: 10.1007/s40502-015-0144-9.10.1007/s40502-015-0144-9]Open DOISearch in Google Scholar
[Fletcher R.A., Gilley A., Sankhla N., Davis T.D. 2000. Triazoles as plant growth regulators and stress protectants. Horticultural Reviews 24: 55–137. DOI: 10.1002/9780470650776.ch3.10.1002/9780470650776.ch3]Open DOISearch in Google Scholar
[Flexas J., Medrano H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89: 183–189. DOI: 10.1093/aob/mcf027.10.1093/aob/mcf027]Open DOISearch in Google Scholar
[Genty B., Briantais J.-M., Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87–92. DOI: 10.1016/s0304-4165(89)80016-9.10.1016/s0304-4165(89)80016-9]Open DOISearch in Google Scholar
[Gilley A., Fletcher R.A. 1997. Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings. Plant Growth Regulation 21: 169–175. DOI: 10.1023/a:1005804717016.10.1023/a:1005804717016]Open DOISearch in Google Scholar
[Hu H., Wang L., Li Y., Sun J., Zhou Q., Huang X. 2016a. Insight into mechanism of lanthanum (III) induced damage to plant photosynthesis. Ecotoxicology and Environmental Safety 127: 43–50. DOI: 10.1016/j.ecoenv.2016.01.008.10.1016/j.ecoenv.2016.01.00826802561]Open DOISearch in Google Scholar
[Hu H., Wang L., Zhou Q., Huang X. 2016b. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice. Environmental Science and Pollution Research 23: 8902–8916. DOI: 10.1007/s11356-015-5962-9.10.1007/s11356-015-5962-926815371]Open DOISearch in Google Scholar
[Hunter D.M., Proctor J.T.A. 1994. Paclobutrazol reduces photosynthetic carbon dioxide uptake rate in grapevines. Journal of the American Society for Horticultural Science 119: 486–491. DOI: 10.21273/jashs.119.3.486.10.21273/JASHS.119.3.486]Search in Google Scholar
[Hu Y., Yu W., Liu T., Shafi M., Song L., Du X. et al. 2017. Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica 55: 443–453. DOI: 10.1007/s11099-016-0658-z.10.1007/s11099-016-0658-z]Open DOISearch in Google Scholar
[Januskaitiene I. 2011. Effects of substrate acidity and UV-B radiation on photosynthesis of radishes. Central European Journal of Biology 6: 624–631. DOI: 10.2478/s11535-011-0027-7.10.2478/s11535-011-0027-7]Open DOISearch in Google Scholar
[Jones H.G. 1985. Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant, Cell and Environment 8: 95–104. DOI: 10.1111/j.1365-3040.1985.tb01227.x.10.1111/j.1365-3040.1985.tb01227.x]Search in Google Scholar
[Ju S.M., Gao M.X., Xu D.L. 2007. Research on the cutting for Sequoia sempervirens. Journal of Xuzhou Institute of Technology 22: 40–43. [in Chinese with English abstract]]Search in Google Scholar
[Ju S.M., Gao M.X., Xu D.L. 2009. Study on the asexual rapid propagation of cold-resistant Sequoia sempervirens. Practical Forestry Technology 1: 23–27. [in Chinese]]Search in Google Scholar
[Liu C., Xia X., Yin W., Huang L., Zhou J. 2006. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D. Don.) Endl.). Plant Cell Reports 25: 621–628. DOI: 10.1007/s00299-006-0120-y.10.1007/s00299-006-0120-y16496152]Open DOISearch in Google Scholar
[Ma Q.-W., Li F.-L., Li C.-S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Yunnan, China. Review of Palaeobotany and Palynology 135: 117–129. DOI: 10.1016/j.revpalbo.2005.03.002.10.1016/j.revpalbo.2005.03.002]Open DOISearch in Google Scholar
[Mataa M., Tominaga S., Kozaki I. 1998. Relative effects of growth retardant (paclobutrazol) and water stress on tree growth and photosynthesis in ponkan (Citrus reticulate Blanco). Journal of the Japanese Society for Horticultural Scienc 67: 28–34. DOI: 10.2503/jjshs.67.28.10.2503/jjshs.67.28]Open DOISearch in Google Scholar
[Mohammadi M.H.S., Etemadi N., Arab M.M., Aalifar M., Arab M., Pessarakli M. 2017. Molecular and physiological responses of Iranian Perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology and Biochemistry 111: 129–143. DOI: 10.1016/j.plaphy.2016.11.014.10.1016/j.plaphy.2016.11.01427915174]Open DOISearch in Google Scholar
[Mohammed N.T., Awang Y., Ahmad I., Noori R.S. 2017. Gas exchange, growth and flowering of Lagerstroemia indica treated with different concentration and application techniques of paclobutrazol. Asian Journal of Plant Sciences 16: 37–44. DOI: 10.3923/ajps.2017.37.44.10.3923/ajps.2017.37.44]Open DOISearch in Google Scholar
[Moradi S., Baninasab B., Gholami M., Ghobadi C. 2017. Paclobutrazol application enhances antioxidant enzyme activities in pomegranate plants affected by cold stress. Journal of Horticultural Science and Biotechnology 92: 65–71. DOI: 10.1080/14620316.2016.1224605.10.1080/14620316.2016.1224605]Open DOISearch in Google Scholar
[Moreira R.A., Fernandes D.R., da Cruz, M.C.M., Lima J.E., de Oliveira A.F. 2016. Water restriction, girdling and paclobutrazol on flowering and production of olive cultivars. Scientia Horticulturae 200: 197–204. DOI: 10.1016/j.scienta.2016.01.014.10.1016/j.scienta.2016.01.014]Open DOISearch in Google Scholar
[Navarro A., Sánchez-Blanco M.J., Bañon S. 2007. Influence of paclobutrazol on water consumption and plant performance of Arbutus unedo seedlings. Scientia Horticulturae 111: 133–139. DOI: 10.1016/j.scienta.2006.10.014.10.1016/j.scienta.2006.10.014]Open DOISearch in Google Scholar
[Olson D.F., Roy D.F., Walters G.A. 1990. Sequoia sempervirens (D. Don) Endl. redwood. In: Burns R.M., Honkala B.H. (Ed.), Silvics of North America; I. Conifers. Agriculture Handbook 654: 541–551.]Search in Google Scholar
[Pal S., Zhao J., Khan A, Yadav N.S., Batushansky A., Barak S., et al. 2016. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports 6: 39321; 13 p. DOI: 10.1038/srep39321.10.1038/srep39321517794228004823]Search in Google Scholar
[Polishchuk O.V., Vodka M.V., Belyavskaya N.A., Khomochkin A.P., Zolotareva E.K. 2016. The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in pea leaves. Cell and Tissue Biology 10: 250–257. DOI: 10.1134/s1990519x16030093.10.1134/S1990519X16030093]Search in Google Scholar
[Rademacher W. 1995. Growth retardants: biochemical features and applications in horticulture. Acta Horticulturae 394: 57–73. DOI: 10.17660/acta-hortic.1995.394.5.]Search in Google Scholar
[Schreiber U. 2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou Govindjee G.C. (Ed.), Chlorophyll a Fluorescence Advances in Photosyn-thesis and Respiration 19: 279–319. DOI: 10.1007/978-1-4020-3218-9_11.10.1007/978-1-4020-3218-9_11]Open DOISearch in Google Scholar
[Sun J., Hu H., Li Y., Wang L., Zhou Q., Huang X. 2016. Effects and mechanism of acid rain on plant chloroplast ATP synthase. Environmental Science and Pollution Research 23: 18296–18306. DOI: 10.1007/s11356-016-7016-3.10.1007/s11356-016-7016-327278067]Open DOISearch in Google Scholar
[Teto A.A., Laubscher C.P., Ndakidemi P.A., Matimati I. 2016. Paclobutrazol retards vegetative growth in hydroponically-cultured Leonotis leonurus (L.) R.Br. Lamiaceae for a multipurpose flowering potted plant. South African Journal of Botany 106: 67–70. DOI: 10.1016/j.sajb.2016.05.012.10.1016/j.sajb.2016.05.012]Open DOISearch in Google Scholar
[Velikova V., Tsonev T., Yordanov I. 1999. Light and CO2 responses of photosynthesis and chlorophyll fluorescence characteristics in bean plants after simulated acid rain. Physiologia Plantarum 107: 77–83. DOI: 10.1034/j.1399-3054.1999.100111.x.10.1034/j.1399-3054.1999.100111.x]Open DOISearch in Google Scholar
[Vu J.C.V., Yelenosky G. 1992. Growth and photosynthesis of sweet orange plants treated with paclobutrazol. Journal of Plant Growth Regulation 11: 85–89. DOI: 10.1007/bf00198019.10.1007/bf00198019]Open DOISearch in Google Scholar
[Wang Y., Li W., Shi S., Liu L., Xie J., Wei Y. 2012. The chlorophyll fluorescence characteristics change of litchi leaves after sprayed PP333 in winter. Chinese Journal of Tropical Crops 33: 1024–1029. [in Chinese with English abstract]]Search in Google Scholar
[Yu Y., Zhang L., Wang H., Li C., Niu T., Yan T., Wang C. 2014. Effect ABA and PP333 on the photosynthesis and chlorophyll fluorescence parameters of Cymbidium seedlings which in low temperature stress and its recovery. Journal of Agriculture 4: 30–37. [in Chinese with English abstract]]Search in Google Scholar
[Zhang J.-W., D’Rozario A., Adams J.M., Li Y., Liang X.-Q., Jacques F.M. et al. 2015. Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: Implications for paleogeography and paleoclimate. American Journal of Botany 102: 103–118. DOI: 10.3732/ajb.1400347.10.3732/ajb.140034725587153]Open DOISearch in Google Scholar
[Zhao X., Li Y., Zheng M., Bian X., Liu M., Sun Y. et al. 2015. Comparative analysis of growth and photo-synthetic characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) hybrid clones of different ploidides. PLoS ONE 10; e0119259, 16 p. DOI: 10.1371/journal.pone.0119259.10.1371/journal.pone.0119259439509825867100]Search in Google Scholar
[Zuo X., Qi R., Wang Y., Shao J., Peng M. 2000. Introduction and ecological adaptability of Sequoia sempervirens Endl. in China. Yunnan Forestry Science and Technology 93: 36–40. [in Chinese with English abstract]]Search in Google Scholar
[Zuo X., Bai S., Shao J., Peng M., Qi R., Wang Y. 2003. Growth of Sequoia sempervirens introduced to Yunnan and reforestation prospect. Yunnan Forestry Science and Technology 104: 2–10. [in Chinese with English abstract]]Search in Google Scholar