Open Access

Discharge coefficient, effective head and limit head in the Kindsvater-Shen formula for small discharges measured by thin-plate weirs with a triangular notch


Cite

Adeyemi, O.I., Oreko, B.U., Abam, J., 2017. Experimental determination of the effect of notch shape on weir flow characteristics using constant head discharge apparatus. Asian J. Curr. Res., 2, 2, 55–64. Search in Google Scholar

Ali, A.A.M, Ibrahim, M., Diwedar, A.I., 2015. The discharge coefficient for a compound sharp crested V-notch weir. Asian J. Eng. Technol., 3, 5, 494–501.10.1016/j.aej.2015.03.026 Search in Google Scholar

Allerton, R.W., 1932. Flow of water over triangular weirs. Thesis. Princeton University, Princeton. Search in Google Scholar

Barr, J., 1910. Experiments upon the flow of water over triangular notches. Engineering, 89, 435–437, 470–473. Search in Google Scholar

Barrett, F.B., 1931. The flow of water over triangular weirs. Thesis. Princeton University, Princeton. Search in Google Scholar

Barrett, J.M., 1924. A study of the flow of water over triangular weirs and the determination of coefficients of discharge for small heads. Thesis. Utah Agricultural College, Logan. Search in Google Scholar

Bautista-Capetillo, C., Robles, O., Júnez-Ferreira, H., Playán, E., 2013. Discharge coefficient analysis for triangular sharp-crested weirs using low-speed photographic technique. J. Irrig. Drain. Eng. - ASCE, 140, 3, 06013005.10.1061/(ASCE)IR.1943-4774.0000683 Search in Google Scholar

Bos, M.G., 1989. Discharge measurement structures. 3. ILRI. Caroline, L.L., Afshar, N.R., 2014. Effect of types of weir on discharge. J. Civ. Eng. Sci. Technol., 5, 2, 35–40. https://doi.org/10.33736/jcest.137.201410.33736/jcest.137.2014 Search in Google Scholar

Cone, V.M., 1916. Flow through weir notches with thin edges and full contractions. J. Agric. Res., 5, 23, 1051–1113. Search in Google Scholar

Cone, V.M., 1917. Construction and use of farm weirs. Farmers’ Bulletin, 813, 1–18. Search in Google Scholar

Cozzens, H.A., 1915. Flow over V-notch weirs. Power, 42, 21, 714. Search in Google Scholar

Cuttle, S.P., Mason, D.J., 1988. A flow-proportional water sampler for use in conjunction with a V-notch weir in small catchment studies. Agr. Water Manage., 13, 93–99. https://doi.org/10.1016/0378-3774(88)90135-710.1016/0378-3774(88)90135-7 Search in Google Scholar

Eli, R.N., 1986. V-notch weir calibration using new parameters. J. Hydraul. Eng. - ASCE, 112, 4, 321–325. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:4(321)10.1061/(ASCE)0733-9429(1986)112:4(321) Search in Google Scholar

Ghodsian, M., 2004. Stage discharge relationships for triangular weir. Int. J. Civ. Eng., 2, 1, 1–7. Search in Google Scholar

Greve, F.W., 1930. Calibration of 16 triangular weirs at Prude. Eng. News-Rec., 105, 5, 166–167. Search in Google Scholar

Greve, F.W., 1932. Flow of water through circular, parabolic, and triangular vertical notch-weirs. Eng. Bulletin Purdue University, 40, 2–84. Search in Google Scholar

Greve, F.W., 1945. Flow of liquids through vertical circular orifices and triangular weirs. Eng. Bull. Purdue University, 29, 3, 1–68. Search in Google Scholar

Grossi, P., 1961. Su uno stramazzo triangolare in parete sottile, libero, con angolo al vertice molto piccolo (On a thin-plated, free triangular weir with a very small vertex angle). L’Acqua, 4, 99–100. (In Italian.) Search in Google Scholar

Hattab, M.H., Mijic, A.M., Vernon, D., 2019. Optimised triangular weir design for assessing the full-scale performance of green infrastructure. Water, 4, 11, 773–790. https://doi.org/10.3390/w1104077310.3390/w11040773 Search in Google Scholar

Hertzler, R.A., 1938. Determination of a formula for the 120-deg V-notch weir. Civil. Eng., 8, 11, 756–757. Search in Google Scholar

Chanson, H., Wang, H., 2012. Unsteady discharge calibration of a large V-notch weir: REPORT No. CH88/12. 1. The University of Queensland, Brisbane, 282355720.10.14264/uql.2016.585 Search in Google Scholar

Chanson, H., Wang, H., 2013. Unsteady discharge calibration of a large V-notch weir. Flow Meas. Instrum., 29, 19–24. https://doi.org/10.1016/j.flowmeasinst.2012.10.01010.1016/j.flowmeasinst.2012.10.010 Search in Google Scholar

ISO 1438, 2017. Hydrometry – Open channel flow measurement using thin-plate weirs. 3. ISO, Geneva. Search in Google Scholar

Itaya, S., Takenaka, T., 1955. Measurement of oil flow by means of 60° sharp-edged triangular weir. Trans. Jpn. Soc. Mech. Eng., 21, 101, 94–96. (In Japanese.) https://doi.org/10.1299/kikai1938.21.9410.1299/kikai1938.21.94 Search in Google Scholar

JCGM 100, 2008. Evaluation of measurement data — Guide to the expression of uncertainty in measurement. 1. BIPM. Search in Google Scholar

Ji, K., 2007. Discharge characteristics of V-shaped multi-slit weirs. Thesis. Concordia University, Montreal. Search in Google Scholar

King, H.W., 1916. Flow of water over right-angled V-notch weir. The Michigan Technic, 29, 3, 189–195. Search in Google Scholar

Lenz, A.T., 1942. Viscosity and surface tension effects on V-notch weir coefficients. Trans. Am. Soc. Civ. Eng., 351–374. Search in Google Scholar

Martikno, R., Humaedi, M., Ashat, A., Situmorang, J., Novianto, Hadi, J., 2013. Evaluation of weirs calculation to estimate well capacity: a numerical study. In: Proc. 13th Indonesia International GEOTHERMAL Convention & Exhibition 2013. Jakarta. 332060750 Search in Google Scholar

Martínez, J., Reca, J., Morillas, M.T., López, J.G., 2005. Design and calibration of a compound sharp-crested weir. J. Hydraul. Eng. -ASCE., 131, 2, 112–116. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(112)10.1061/(ASCE)0733-9429(2005)131:2(112) Search in Google Scholar

Mawson, H., 1927. Applications of the principles of dimensional and dynamical similarity to the flow of liquids through orifices, notches and weirs. Proc. Inst. Mech. Eng., 112, 537–547.10.1243/PIME_PROC_1927_112_022_02 Search in Google Scholar

Milburn, P., Burney, J., 1988. V-notch weir boxes for measurement of subsurface drainage system discharges. Can. Agr. Eng., 30, 2, 209–212. Search in Google Scholar

Numachi, F., Hutizawa, S., 1941a. On the overflow coefficient of a right-angled triangular weir) (2. Notice). J. Soc. Mech. Eng., 44, 286, 286. (In Japanese.) https://doi.org/10.1299/jsmemag.44.286_5_110.1299/jsmemag.44.286_5_1 Search in Google Scholar

Numachi, F., Hutizawa, S., 1941b. On the overflow coefficient of a right-angled triangular weir (2. Notice). Trans. Jpn. Soc. Mech. Eng.,7, 27–3, 5–9. (In Japanese.) https://doi.org/10.1299/kikai1938.7.27-3_510.1299/kikai1938.7.27-3_5 Search in Google Scholar

Numachi, F., Hutizawa, S., 1942a. On the overflow coefficient of a right-angled triangular weir (3. Notice). J. Soc. Mech. Eng., 45, 308, 725. (In Japanese.) https://doi.org/10.1299/jsmemag.45.308_725_210.1299/jsmemag.45.308_725_2 Search in Google Scholar

Numachi, F., Hutizawa, S., 1942b. On the overflow coefficient of a right-angled triangular weir (3. Notice). Trans. Jpn. Soc. Mech. Eng., 8, 33–3, 37–40. (In Japanese.) https://doi.org/10.1299/kikai1938.8.33-3_3710.1299/kikai1938.8.33-3_37 Search in Google Scholar

Numachi, F., Kurokawa, T., Hutizawa, S., 1940a. On the overflow coefficient of a right-angled triangular weir. J. Soc. Mech. Eng., 43, 275, 45. (In Japanese.) https://doi.org/10.1299/jsmemag.43.275_45_210.1299/jsmemag.43.275_45_2 Search in Google Scholar

Numachi, F., Kurokawa, T., Hutizawa, S., 1940b. On the overflow coefficient of a right-angled triangular weir). Trans. Jpn. Soc. Mech. Eng., 6, 22–3, 10–14. (In Japanese.) https://doi.org/10.1299/kikai1938.6.22-3_1010.1299/kikai1938.6.22-3_10 Search in Google Scholar

Numachi, F., Kurokawa, T., Tota, E., 1937. Influence of the surface of the weir edge of a right-angled triangular weir, which projected discontinuously upstream due to the creation of an overlap, on the flow coefficient. Trans. Am. Soc. Mech. Eng., 3, 11, 174–176. (In Japanese.) https://doi.org/10.1299/kikai1935.3.11_17410.1299/kikai1935.3.11_174 Search in Google Scholar

Numachi, F., Saito, I., 1948. On allowable shortest length of channel for triangular notch. J. Soc. Mech. Eng., 51, 357, 229–230. (In Japanese.) https://doi.org/10.1299/jsmemag.51.357_229_210.1299/jsmemag.51.357_229_2 Search in Google Scholar

Numachi, F., Saito, I., 1951. On allowable shortest length of channel for triangular notch. Trans. Jpn. Soc. Mech. Eng., 17, 56, 1–3. (In Japanese.) https://doi.org/10.1299/kikai1938.17.110.1299/kikai1938.17.1 Search in Google Scholar

O’Brien, M.P., 1927. Least error in V-notch weir measurements when angle is 90 degrees. Eng. News-Rec., 98, 25, 1030. Search in Google Scholar

Piratheepan, M., Winston, N.E.F., Pathirana, K.P.P., 2007. Discharge measurements in open channels using compound sharp-crested weirs. J. Inst. Eng., 40, 3, 31–38. https://doi.org/10.4038/engineer.v40i3.714410.4038/engineer.v40i3.7144 Search in Google Scholar

Pospíšilík, Š., 2020. 2.67° triangular-notch thin-plate weir. In: Juniorstav 2020. ECON Publishing, Brno, pp. 598–603. (In Czech.). https://juniorstav.fce.vutbr.cz/download Search in Google Scholar

Pospíšilík, Š., 2021. Identification and quantification of uncertainties in the measurement and evaluation of the discharge coefficient of triangular-notch thin-plate weir. In: Juniorstav 2021. ECON Publishing, Brno, pp. 512–517. (In Czech.). https://juniorstav.fce.vutbr.cz/download Search in Google Scholar

Pospíšilík, Š., 2022. Analysis of the exploration range of triangular–notch thin–plate weirs. In: Juniorstav 2022. 1. ECON Publishing, Brno, pp. 468–474. (In Czech.). https://juniorstav.fce.vutbr.cz/download Search in Google Scholar

Pospíšilík, Š., Zachoval, Z., Pařílková, J., 2022. Characteristics of velocity field in short flume in front of triangular-notch thin-plate weir. In: Proc. 34th Symposium on Anemometry. Institute of Hydrodynamics CAS, Prague, pp. 40–49. (In Czech.) Search in Google Scholar

Ramamurthy, A.S., Kai, J., Han, S.S., 2013. V-shaped multislit weirs. J. Irrig. Drain. Eng. - ASCE, 139, 7, 582–585. https://doi.org/10.1061/(ASCE)IR.1943-4774.000057410.1061/(ASCE)IR.1943-4774.0000574 Search in Google Scholar

Reddy, M.S., Reddy, Y.R., 2017. Experimental investigation on the influence of density of fluid on efficiency of V-notch. Int. J. Adv. Sci. Res. Eng., 3, 9, 35–41. https://doi.org/10.7324/%20IJASRE.2017.32515 Search in Google Scholar

Schlag, A., 1962. Note on flow measurement for triangular weir. La Tribune de Cebedeau. Liege, 15, 218, 22–24. (In French.) Search in Google Scholar

Schoder, E.W., Turner, K. B., 1929. Precise weir measurements. Trans. Am. Soc. Civ. Eng., 1929, 93, 999–1190.10.1061/TACEAT.0004066 Search in Google Scholar

Shen, J., 1981. Discharge characteristics of triangular-notch thin-plate weirs: Studies of flow of water over weirs and dams. Geological survey water-supply paper, 1617-B. U. S. Government Printing Office, Washington. Search in Google Scholar

Smith, E.S., 1934. The V-notch: Weir for hot water. American Society of Mechanical Engineers, 56, 9, 787–789.10.1115/1.4019865 Search in Google Scholar

Smith, E.S., 1935. The V-notch weir for hot water. Trans. Am. Soc. Mech. Eng., 57, 249–250.10.1115/1.4019977 Search in Google Scholar

Strickland, T.P., 1910. Mr. James Barr’s experiments upon the flow of water over triangular notches. Engineering, 90, 598. Search in Google Scholar

Switzer, F.G., 1915. Test of the effect of temperature on weir coefficients. Engineering News, 73, 13, 636–637. Search in Google Scholar

Thomson, J., 1858. On experiments on the measurement of water by triangular notches in weir boards. In: Proc. Twenty-eight Meeting of the British Association for the Advancement of Science. John Murray, Albemarle street, London, pp. 181–185. Search in Google Scholar

Thomson, J., 1861. On experiments on the gauging of water by triangular notches. In: Proc. Thirty-first Meeting of the British Association for the Advancement of Science. John Murray, Albemarle street, London, pp. 151–158. Search in Google Scholar

Thornton, B.M., 1929. Measurement of fluid flow with triangular notches. Power Engineer, 24, 313–315. Search in Google Scholar

Vatankhah, A.R., Khamisabadi, M., 2019. Stage-discharge relationship for triangular and curved-edge triangular weirs. Flow. Meas. Instrum., 69, 1–10. https://doi.org/10.1016/j.flow-measinst.2019.10160910.1016/j.flowmeasinst.2019.101609 Search in Google Scholar

Vicena, D., 2020. Minimum head of triangular-notch thin-plate weir. Thesis. BUT, Brno. (In Czech.) Search in Google Scholar

Viparelli, M., 1947. On the Thompson weir. In: Estratto da Atti Fondazione Politecnica del Mezzogiorno, 3, pp. 1–24. (In Italian.) Search in Google Scholar

Wirak, L.R., 1934. An investigation of the flow of water over triangular weirs of different angles. Thesis. Princeton University, Princeton. Search in Google Scholar

Yarnall, D.R., 1912. The V-notch weir method of measurement. J. Am. Soc. Mech. Eng., 34, 2, 1479–1494. Search in Google Scholar

Yarnall, D.R., 1927. Accuracy of the V-notch-weir method of measurement. Trans. Am. Soc. Mech. Eng., 48, 939–964. Search in Google Scholar

eISSN:
1338-4333
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other