It has been demonstrated before that human skin can be modeled as a memristor (memory resistor). Here we realize a memristor bridge by applying two voltages of opposite signs at two different skin sites. By this setup it is possible to use human skin as a frequency doubler and half-wave rectifier which is an application of the non-linear electrical properties of human skin. The corresponding electrical measurements are non-linear since these are affected by the applied stimulus itself.
Keywords
- Bioimpedance
- non-linear electrical measurements
- human skin
- memristor
- rectification
A memristor (
Equations (1) and (2) describe a generic memristor which is the second most general memristor type [2] and its memristance,
This paper focuses on a 4-memristor bridge circuit (similar to a Wheatstone bridge but based on transversal memristor models instead of resistors, see Fig. 1a) that was used for synaptic weight programming in [15]. The same circuit was used for the generation of nth-order harmonics and frequency doubling in [16] and as full-wave rectifier in [17]. Here this circuit (in a two memristor configuration, see [17] and Fig. 1b) is realized with human skin (see Fig. 1c.) Human skin exhibits non-linear electrical properties if the applied stimulus is large enough [18, 19, 20]. It was concluded that the sweat ducts in human skin can be modelled as a memristor [21]. As it was shown later, human skin actually contains two different memristor types, one based on electro-osmosis within the sweat ducts and one based on thermal changes within the stratum corneum [22]. Both are electrically in parallel to each other and the sweat duct memristor usually dominates the measurement as long as the galvanic contact through the sweat ducts is given. The memductance of the sweat duct memristor increases or decreases, dependent on the sign of the applied voltage (or current) and the corresponding pinched hysteresis loop in the V-I plot is transversal [22]. The stratum corneum memristor experiences a memductance increase independent of the sign of the applied voltage and its pinched hysteresis loop is tangential [22]. The functioning of the here implemented memristor bridge depends on the physical conditions of the skin. If the galvanic contact through the sweat ducts is given under both corresponding electrodes (CC1 and CC2, see Fig. 1c), similar functioning as in [15, 16, 17] may be archived by the implemented circuit.
Fig. 1

Measurements were done on 28 test subjects with constant amplitude (+1 V and – 1 V) sinusoidal voltages of different very low frequencies that were applied via surface electrodes (see Fig. 1c.) The currents recorded from some subjects were (more or less) half-wave rectified and for some other subjects the obtained currents had double the frequency as the applied voltages. A parameter that reflects the amount of rectification is introduced and used for quantitative analysis. The recordings here are affected by the applied voltage itself and can consequently be seen as non-linear electrical measurements (on human skin) [22]. Furthermore, these can be seen as part of Bioimpedance, since this field encompasses the passive electrical properties (memristor = fourth passive electrical circuit element) of organic tissues and corresponding recording techniques [23].
The measurements were conducted on 28 test subjects (16 male, 12 female, mean age 31 years, SD
The measurements were either performed at the preferred or non-preferred hand side (randomly chosen). The results here were obtained from the third experiment of a test session that had an overall duration of one hour (the results from the first experiment are presented in [22] and within the second experiment, direct current (DC) voltage pulses with pulse heights of +0.8 V and -0.8 V were applied to the skin, unpublished results). After the experiment with the DC pulses (before this experiment started), all electrodes were disconnected from the instrumentation (but remained at the skin of the test subjects), and the test subjects were asked to perform a one-minute workout on a stationary bike. After the test subjects completed the workout, the electrodes were connected to the instrumentation as illustrated in (Fig. 1c.)
Within this experiment, two sinusoidal voltages (
A custom-built measurement system (see Fig. 1c top) was used for the recordings. A data acquisition card (DAQ) (type USB-6356 from National instruments) enabled the application of two constant voltages and simultaneous reading (both was performed with 500 samples per period). The DAQ was connected to a personal computer and controlled by a custom-made software, which was written in NI LabVIEW (version 2014). The generated voltages
The two voltages
A tub filled with saline solution (0.9% NaCl, electrical contact was realized by 6 Ag/AgCl electrodes that were placed at the well of the tub) in which the foot was placed was used as a large M-electrode to minimize the contribution of the corresponding skin memristor to the measurement (see [24]).
The measured current,
with
since the voltage
shall be introduced for the quantitative analysis. This is the ratio of the area under the obtained current (in the current-time plot, see examples in Fig. 2) of one period normed by the duration of the period,
Fig. 2

The ratio of rectification,
The results depend on the initial conditions of the skin and may be categorized into three groups.
The results in Fig. 2(a) demonstrate that the implemented human skin memristor circuit can function more or less as a frequency doubler or full wave rectifier. The prerequisite for this functioning is that the galvanic contact through the sweat ducts is given under both, the CC1 and CC2 electrodes, and that the state changes of the corresponding sweat duct memristors are relatively fast.
When
The measured currents of some other subjects are more or less half wave rectified (Fig. 2b.) If the galvanic contacts through the sweat ducts under both, the CC1 and CC2 electrodes, are achieved but one of both sweat duct memristors has a much lower initial memductance, a corresponding current like the one recorded from subject D (Fig. 2b, top) may be observed. In this example, the skin memristor under CC1 initially presented a much lower memductance than that under CC2. The memductance under CC2 decreases in the second half of the period, while that under CC1 increases, but both end up at similar states. The resulting current is almost zero, since it is the sum of a negative current and a positive current of almost the same magnitude.
Subject B (see Fig. 2b middle plot) represents a case of half wave rectification under different conditions than subject D. The CC1 electrode was attached to the earlobe of Subject B (Variant A, see Fig. 1c) and it is known from the data in [22] that the skin under CC2 of subject B reflects the sweat duct memristor (pinched hysteresis loop with one pinched point, see Fig. 2c in [22]) while the skin under CC1 reflects the stratum corneum memristor (hysteresis loop with two pinched points, see Fig. S1 here). However, the memductances of both are within the same magnitude (maximum current of about 5 μA at 1.2 V amplitude for both). In this example, the applied voltages will cause a memductance decrease under CC2 (sweat duct memristor) and a memductance increase under CC1 (stratum corneum memristor) within the first half of the period and the negative current through the skin under CC1 will dominate the measurement after a while. In the second half of the period, the memductances of both skin sites (under CC1 and CC2) will increase (since the stratum corneum memristor exhibits a memductance increase independent of the polarity of the applied voltage) and the currents though both skin sites will more or less cancel each other out. Similar results were achieved for the same subject also at 0.05 Hz (Fig. 2b bottom). A more detailed description that account for the oscillations in this specific example is given in the supplementary information.
Fig. 3

Fig. S1

Subjects E and F in Fig. 2c represent the recordings in which neither frequency doubling, full wave rectification nor half rectification were observed. The obtained currents are nonlinear (since the shape of the current is different from the applied sinusoidal voltage waveform). However, in case of subject E, the memductance under CC1 is initially much lower than that under CC2 and does not change significantly. The resulting current is more or less the current through the skin under CC2 which is dominated by the sweat duct memristor. For subject F, the whole measurement is dominated by the skin under CC1.
A quantitative presentation of the results based on the parameter,
It is possible to rectify (more or less) electrical current with human skin. The adverbs “more or less” take into account that the obtained currents are not perfectly rectified as it would have been with a diode bridge. The sinusoidal
waveform is distorted since the recordings here are nonlinear (see also [22]). The rectification (if it occurs) is based on the state changes of two memristors; if the skin under one electrode dominates the measurement (high memductance) during one half of the period and if the skin of the other electrode will become dominant after a while in the other half of the period, the current will be more or less full wave rectified. The state change of the sweat duct memristor is based on ion movements and takes time (as it does for memristors in general). There is always a delay until the other memristor will become dominant (and the polarity of the current switches) after the polarities of the voltages have switched. The lower the frequency of the voltages the more time remains for the state changes to happen and the more rectified the current becomes. With higher frequencies less subjects exhibited rectified currents and the amount of rectification decreases (see Fig. 3). In general, as the frequency increases, the current becomes more linear. The electrical response of the skin at the forehead, for example, is likely to be completely linear when a sinusoidal voltage with 1 V amplitude and frequencies above 2 Hz is applied (see range of linear vs. non-linear measurements in Fig. 3 of [22]).
The classification whether the current was full wave rectified, half wave rectified or none of both was done by optical inspection of the current over time. The functioning of the overall circuit can also be distinguished by the corresponding voltage-current plots (see Fig. S2 in the supplementary information). A more qualitative measure was introduced by,
Fig. S2

Based on the results here, it may be useful to classify currents that have
The existence of the sweat duct memristor (and the stratum corneum memristor) [22] has been demonstrated at the forehead and the earlobe. However, the galvanic contact through the sweat ducts was achieved from more subjects at the forehead than the earlobe (25 out of 28 subjects vs. 9 out of 28 subjects, see [22]). Since only 5 out 12 subjects obtained either frequency doubling or half wave rectification when the electrode at the earlobe was used as CC1, another setup was used for the remaining 16 subjects in which CC1 was placed at the forehead close to CC2 (placed at the same time, see Fig. 1). However, also only 6 out of 16 subjects exhibited a rectified current in this setup. Since galvanic contact through the sweat ducts was usually obtained at the forehead under CC2 (see [22]) one could have expected similar conditions for the skin under CC1 in this setup (variant B) and consequently more subjects that exhibit rectified currents. However, each non-linear electrical measurement on human skin will also affect follow up measurements. Non-linear measurements were conducted at the skin under CC2 (experiment 1 presented in [22] and experiment 2 in which DC pulses were applied, unpublished results) before this experiment started but not at the skin at the forehead under CC1. The memductance of the sweat duct memristor under CC2 increased with the before conducted experiments since sweat was pulled towards the skin surface which provided better current pathways. As a consequence, the initial memductance of the skin under CC2 was higher than that under CC1 for many subjects and if changes happened slowly, CC2 was dominating the measurements in both halves of the periods of the voltage (non-linear but non-rectified current). It was tried to reset the different initial conditions and to ensure galvanic contact through the sweat ducts by adding the one minute of workout at the stationary bike before the experiment started. It was shown that the non-linear electrical properties of human skin can change significantly before and after workout (see [24]). However, one minute on the stationary bike was very likely too short to cause any thermal sweating. If one repeats the experiment here with both electrodes at the forehead but without non-linear electrical measurements on only one of both electrodes before, one may obtain rectified currents from more subjects. Chances to obtain rectified currents are even higher if a workout that actually causes thermal sweating is included in the protocol.
The implemented memristor bridge can be seen as one application of the non-linear electrical properties of human skin and as part of non-linear electrical measurements in general. The functioning of the circuit (frequency doubling, full wave rectification, half wave rectification or none of these) depends on the conditions of the corresponding human skin memristors. The measurements will reveal how the physiological conditions of one skin site are in comparison to another skin site. Furthermore, since the half wave or full wave rectification only works under certain conditions, the memristor bridge circuit may be used in authentication systems. For example, one skin memristor may be replaced by an external reference memristor and access is only granted if the overall current is rectified. Other functions of the memristor bridge in general (like the generation of pulses that had similar shapes as neuronal pulses in [17] or synaptic weight programming in [15]) may be implemented with human skin, as well. However, as demonstrated here, it is in principle possible to realize a memristor circuit with human skin and further applications may be found later.
Fig. 1
![Memristor bridge circuit and its implementation on human skin (a) Schematic of the four memristor bridge circuit similar to the ones presented in [15-17] with voltage source vCC and measured voltage vM. (b) The two memristor version of the memristor bridge is realized by using two voltage sources with opposite sign as illustrated in the schematic (see also [17]). (c) Memristor bridge circuit realized with human skin. Schematic of the instrumentation (top) and the corresponding electrode placement (bottom) is shown for the left-hand side. The electrode setup on the right-hand side was equivalent. Voltages vCC1 and vCC2 were applied at the CC1 and CC2 electrodes, respectively. The CC1 electrode was attached to the earlobe (variant A, chosen for 12 out of 28 subjects) or to the forehead (variant B, chosen for 16 out of 28 subjects). The CC2 electrode was always placed at the forehead. All electrodes were put in place right after each other. The stratum corneum memristor and the sweat duct memristor (under each electrode) are electrically in parallel to each other and can be modeled as one overall memristor due to the closure theorem [1]. The greyed memristor symbol under the M electrode shall illustrate that the influence of the corresponding skin to the measurement is negligible. The direction of the voltage here is from skin surface (under CC1 and CC2) to deeper skin layers while it was from deeper skin layers to skin surface in the setup used in [22]. The same photograph that illustrates the electrode placement at the earlobe has been presented in [22] under Creative Commons Attribution 4.0 International License.](https://sciendo-parsed-data-feed.s3.eu-central-1.amazonaws.com/600600fde797941b18f2d1d8/j_joeb-2018-0023_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220704T081331Z&X-Amz-SignedHeaders=host&X-Amz-Expires=18000&X-Amz-Credential=AKIA6AP2G7AKP25APDM2%2F20220704%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Signature=8f4fa7e8043c20d49a98bacdc45feccebf1c9bfd7a030f1783b5a957a9ef46f3)
Fig. 2
![Results from several subjects. Applied sinusoidal voltage, vCC1, (on CC1) and measured current, i, over time. The sign of the amplitude of vCC1 was either 1 V (subject A, for example) or -1 V (subject B, for example) due to randomization and the sign of vCC2 was always opposite. In the top and middle line, the results of the recordings with a voltage frequency of 0.005 Hz are shown. Subject labelling is in accordance with the results presented in [22]. The applied voltages themselves affect the memductance of the skin and consequently the resulting current (non-linear electrical measurement). The memductance changes during the recording and can be different at the beginning of the second period which explains also the differences in the recorded current from period to period. (a) Subject A, and V at 0.005 Hz and Subject L at 0.5 Hz. The frequency of the measure is double the frequency of the applied voltages. The measured currents of a total of five subjects (2 out of 12 with the CC1 electrode at the earlobe, 3 out of 16 with the CC1 electrode at the forehead) are comparable when the applied voltage frequency is 0.005 Hz. Two of these subjects show similar results at 0.05 Hz, and one of these two even shows a similar result at 0.5 Hz (subject L). (b) Subject D and B at 0.005 Hz and subject B at 0.05 Hz. The measured current has a large magnitude in one half of the period and is more or less cut off during the other half of the period. Six subjects in total (3 out of 12 with the CC1 electrode at earlobe, 3 out of 16 with the CC1 electrode at the forehead) show a similar behavior at a frequency of 0.005 Hz and five out of them show also (more or less) similar behavior at 0.05 Hz. (c) Subject E and F. The measured currents are non-linear, but neither half-wave rectification nor frequency doubling is observed. Seventeen subjects in total show similar behavior at 0.005 Hz.](https://sciendo-parsed-data-feed.s3.eu-central-1.amazonaws.com/600600fde797941b18f2d1d8/j_joeb-2018-0023_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220704T081331Z&X-Amz-SignedHeaders=host&X-Amz-Expires=18000&X-Amz-Credential=AKIA6AP2G7AKP25APDM2%2F20220704%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Signature=5b4a49ed33a143e6e6259192da0529f10a1fcdbd4a7dc3d76bb3a0650dfcde5a)
Fig. 3

Fig. S1
![Alternating current (AC) voltage-current plot of subject B at the earlobe, shown for the third period of applied sinusoidal voltage with frequency of 0.05 Hz and amplitude of 1.2 V. These data (not shown before) are obtained from the experiment presented in [22]. The two pinched points are indication that the stratum corneum memristor (in parallel with the capacitive properties of the stratum corneum) is dominating the measurement and that the galvanic contact through the sweat ducts was not given (see [22]).](https://sciendo-parsed-data-feed.s3.eu-central-1.amazonaws.com/600600fde797941b18f2d1d8/j_joeb-2018-0023_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220704T081331Z&X-Amz-SignedHeaders=host&X-Amz-Expires=18000&X-Amz-Credential=AKIA6AP2G7AKP25APDM2%2F20220704%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Signature=5aa8f0f5b643d7888859c26bacc6cb7fea31a50839de66aa9adea17eae3bae2b)
Fig. S2

Monitoring the skin biophysical parameters among coronavirus patients for three days in a row: a preliminary study Influence of acute water ingestion and prolonged standing on raw bioimpedance and subsequent body fluid and composition estimates Validation of non-empirical fat-free mass estimation model for a wrist-worn device Bioelectrical impedance changes of the trunk are opposite the limbs following acute hydration change Identification of contractions from Electrohysterography for prediction of prolonged labor Opinion: The future of electrical impedance tomography