[1. Dunning, J. H. (2014). The Globalization of Business (Routledge Revivals): The Challenge of the 1990s. London: Routledge.10.4324/9781315743691]Search in Google Scholar
[2. Erdoğan, S. & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100-114.10.1016/j.tre.2011.08.001]Search in Google Scholar
[3. Koç, Ç. & Karaoglan, I. (2016). The green vehicle routing problem: A heuristic based exact solution approach. Applied Soft Computing, 39, 154-164.10.1016/j.asoc.2015.10.064]Search in Google Scholar
[4. Bektaş, T. & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B: Methodological, 45 (8), 1232-1250.10.1016/j.trb.2011.02.004]Search in Google Scholar
[5. Demir, E., Bektaş, T. & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the pollution-routing problem. European Journal of Operational Research, 223(2), 346-359.10.1016/j.ejor.2012.06.044]Search in Google Scholar
[6. Koç, Ç., Bektaş, T., Jabali, O. & Laporte, G. (2014). The fleet size and mix pollution-routing problem. Transportation Research Part B: Methodological, 70, 239-254.10.1016/j.trb.2014.09.008]Search in Google Scholar
[7. Demir, E., Bektaş, T. & Laporte, G. (2014). The bi-objective pollution-routing problem. European Journal of Operational Research, 232(3), 464-478.10.1016/j.ejor.2013.08.002]Search in Google Scholar
[8. Laporte, G., Nobert, Y. & Taillefer, S. (1988). Solving a family of multi-depot vehicle routing and location-routing problems. Transportation Science, 22(3), 161-172.10.1287/trsc.22.3.161]Search in Google Scholar
[9. Detti, P., Papalini, F. & de Lara, G. Z. M. (2017). A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega, 70, 1-14.10.1016/j.omega.2016.08.008]Search in Google Scholar
[10. Bae, H. & Moon, I. (2016). Multi-depot vehicle routing problem with time windows considering delivery and installation vehicles. Applied Mathematical Modelling, 40(13-14), 6536-6549.10.1016/j.apm.2016.01.059]Search in Google Scholar
[11. Sundar, K. & Rathinam, S. (2017). Algorithms for heterogeneous, multiple depot, multiple unmanned vehicle path planning problems. Journal of Intelligent & Robotic Systems, 88(2-4), 513-526.10.1007/s10846-016-0458-5]Search in Google Scholar
[12. Crevier, B., Cordeau, J. F. & Laporte, G. (2007). The multi-depot vehicle routing problem with inter-depot routes. European Journal of Operational Research, 176(2), 756-773.10.1016/j.ejor.2005.08.015]Search in Google Scholar
[13. Cordeau, J.F. & Maischberger, M. (2012). A parallel iterated tabu search heuristic for vehicle routing problems. Computers & Operations Research, 39(9), 2033-2050.10.1016/j.cor.2011.09.021]Search in Google Scholar
[14. Escobar, J. W., Linfati, R., Toth, P. & Baldoquin, M. G. (2014). A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. Journal of Heuristics, 20(5), 483-509.10.1007/s10732-014-9247-0]Search in Google Scholar
[15. Shimizu, Y. & Sakaguchi, T. (2014). A hierarchical hybrid meta-heuristic approach to coping with large practical multi-depot VRP. Industrial Engineering & Management Systems, 13(2), 163-171.10.7232/iems.2014.13.2.163]Search in Google Scholar
[16. Subramanian, A., Uchoa, E. & Ochi, L. S. (2013). A hybrid algorithm for a class of vehicle routing problems. Computers & Operations Research, 40(10), 2519-2531.10.1016/j.cor.2013.01.013]Search in Google Scholar
[17. Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: Minimizing route duration. ORSA Journal on Computing, 4(2), 146-154.10.1287/ijoc.4.2.146]Search in Google Scholar
[18. Desrochers, M., Desrosiers, J. D. & Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with time windows. Operations Research, 40(2), 342-354.10.1287/opre.40.2.342]Search in Google Scholar
[19. Ombuki, B., Ross, B. J. & Hanshar, F. (2006). Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence, 24(1), 17-30.10.1007/s10489-006-6926-z]Search in Google Scholar
[20. Taş, D., Dellaert, N., Van Woensel, T. & De Kok, T. (2013). Vehicle routing problem with stochastic travel times including soft time windows and service costs. Computers & Operations Research, 40(1), 214-224.10.1016/j.cor.2012.06.008]Search in Google Scholar
[21. Angelelli, E. & Mansini, R. (2002). The vehicle routing problem with time windows and simultaneous pick-up and delivery. In Klose, A., Speranza, M. G. & Van Wassenhove, L. N. (Eds.), Quantitative approaches to distribution logistics and supply chain management (pp. 249-267). Berlin: Springer.]Search in Google Scholar
[22. Leung, S. C. H., Zhang, Z., Zhang, D., Hua, X. & Lim, M. K. (2013). A meta-heuristic algorithm for heterogeneous fleet vehicle routing problems with two-dimensional loading constraints. European Journal of Operational Research, 225(2), 199-210.10.1016/j.ejor.2012.09.023]Search in Google Scholar
[23. Jiang, J., Ng, K. M., Poh, K. L. & Teo, K. M. (2014). Vehicle routing problem with a heterogeneous fleet and time windows. Expert Systems with Applications, 41(8), 3748-3760.10.1016/j.eswa.2013.11.029]Search in Google Scholar
[24. Belfiore, P. & Yoshizaki, H. T. Y. (2013). Heuristic methods for the fleet size and mix vehicle routing problem with time windows and split deliveries. Computers & Industrial Engineering, 64(2), 589-601.10.1016/j.cie.2012.11.007]Search in Google Scholar
[25. Jair, J., Paternina-Arboleda, C. D., Cantillo, V. & Montoya-Torres, J. R. (2013). A two-pheromone trail ant colony system—Tabu search approach for the heterogeneous vehicle routing problem with time windows and multiple products. Journal of Heuristics, 19(2), 233-252.10.1007/s10732-011-9184-0]Search in Google Scholar
[26. Baños, R. L., Ortega, J., Gil, C. N., Márquez, A. L. & De Toro, F. (2013). A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows. Computers & Industrial Engineering, 65(2), 286-296.10.1016/j.cie.2013.01.007]Search in Google Scholar
[27. Guerriero, F., Surace, R., Loscri, V. & Natalizio, E. (2014). A multi-objective approach for unmanned aerial vehicle routing problem with soft time windows constraints. Applied Mathematical Modelling, 38(3), 839-852.10.1016/j.apm.2013.07.002]Search in Google Scholar