Open Access

Changing Sensitivity of Diverse Tropical Biomes to Precipitation Consistent with the Expected Carbon Dioxide Fertilization Effect


Cite

Abera, T.A., J. Heiskanen, E.E. Maeda, B.T. Hailu, P.K.E. Pellikka (Submitted). Improved detection of ecosystem structural change reveals dominant fractional woody cover decline in Eastern Africa. Submitted to RSE. Search in Google Scholar

Amara, E., H. Adhikari, M. Munyao, M. Siljander, P. Omondi, J. Heiskanen & P. Pellikka, (2020). Aboveground biomass distribution in a multi-use savannah landscape in southeastern Kenya: impact of land use and fences. Land 2020, 9, 381; doi:10.3390/land9100381 Open DOISearch in Google Scholar

Vilagrosa, A., Chirino, E., Peguero-Pina, J., Barigah T., Gil-Pelegrín, E., and Cochard, H. (2013). Plant responses to drought stress: From morphological to molecular features. In Plant Responses to Drought Stress: From Morphological to Molecular Features (pp. 1–466). doi: 10.1007/978-3-642-32653-0. Open DOISearch in Google Scholar

Asbjornsen, H., Shepherd G., Helmers M., Mora G., (2008). Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S., Plant and Soil, 308(1–2), pp. 69–92. doi: 10.1007/s11104-008-9607-3. Open DOISearch in Google Scholar

Auken, O. W. Van (2000). Shrub Invasions of North American Semiarid Grasslands, Annual Review of Ecology and Systematics, 31, pp. 197–215. Search in Google Scholar

Bat-oyun, T., Shinoda, M. and Tsubo, M. (2012). Effects of water and temperature stresses on radiation use efficiency in a semi-arid grassland, 9145. doi: 10.1080/17429145.2011.564736. Open DOISearch in Google Scholar

Belay, T. A., Totland, T. and Moe, S. R. (2013). Woody vegetation dynamics in the rangelands of lower Omo region, southwestern Ethiopia, Journal of Arid Environments. Elsevier Ltd, 89(July 2015), pp. 94–102. doi: 10.1016/j.jaridenv.2012.10.006. Open DOISearch in Google Scholar

Belsky, A. J. & Amundson, R. G. (1992). (1992). Effects of trees on understorey vegetation and soils at forest-savanna boundaries in East Africa. In Furley, P. A., Proctor, J. & Ratter, J. A. (ed.) The Nature and Dynamics of Forest-Savanna Boundaries (pp. 353–366), London: Chapman & Hall. Search in Google Scholar

Buitenwerf, R. et al. (2012). Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver, Global Change Biology, 18(2), pp. 675–684. doi: 10.1111/j.1365-2486.2011.02561.x. Open DOISearch in Google Scholar

Camberlin, P. et al. (2007). Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa, Remote Sensing of Environment, 106(2), pp. 199–216. doi: 10.1016/j.rse.2006.08.009. Open DOISearch in Google Scholar

DeLucia, E. H., George, K. and Hamilton, J. G. (2002). Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide, 2050(Ipcc 1996), pp. 1003–1010. Search in Google Scholar

Eggemeyer, K. D. et al. (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland, Tree Physiology, 29(2), pp. 157–169. doi: 10.1093/treephys/tpn019.19203941 Open DOISearch in Google Scholar

Eldridge, D. J. et al. (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis, Ecology Letters, 14(7), pp. 709–722. doi: 10.1111/j.1461-0248.2011.01630.x.356396321592276 Open DOISearch in Google Scholar

Friedl, M., Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Retrieved July, 16th, 202 from https://doi.org/10.5067/MODIS/MCD12Q1.006’. Search in Google Scholar

Gonsamo, A., Ciais, P., Miralles, D.G., Sitch, S., Dorigo, W., Lombardozzi, D., Friedlingstein, P., Nabel, J.E., Goll, D.S., O’Sullivan, M., Arneth, A., Anthoni, P., Jain, A.K., Wiltshire, A., Peylin, P. and Cescatti, A. (2021). Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology. Accepted Author Manuscript. https://doi.org/10.1111/gcb.15658.33910268 Search in Google Scholar

Gonsamo, A., Chen, J.M. and Lombardozzi, D. (2016). Global vegetation productivity response to climatic oscillations during the satellite era. Glob Change Biol, 22: 3414-3426. doi:10.1111/gcb.13258.26919189 Open DOISearch in Google Scholar

Gray, S. B. and Brady, S. M. (2016). Plant developmental responses to climate change, Developmental Biology. Elsevier, 419(1), pp. 64–77. doi: 10.1016/j.ydbio.2016.07.023.27521050 Open DOISearch in Google Scholar

Guan, K. et al. (2018). Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length, Environmental Research Letters, 13(2). doi: 10.1088/1748-9326/aa9f30. Open DOISearch in Google Scholar

Guay, K. C. et al. (2014). Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment, Global Change Biology, 20(10), pp. 3147–3158. doi: 10.1111/gcb.12647.431285424890614 Open DOISearch in Google Scholar

Guo Liu, H. L. and Y. Y. C. (2013). Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes, Environmental Research Letters. doi: 10.1088/1748-9326/8/2/025009. Open DOISearch in Google Scholar

Harris, I. et al. (2014). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset, International Journal of Climatology, 34(3), pp. 623–642. doi: 10.1002/joc.3711. Open DOISearch in Google Scholar

Hilker, T. et al. (2014). Vegetation dynamics and rainfall sensitivity of the Amazon, Proceedings of the National Academy of Sciences of the United States of America, 111(45), pp. 16041–16046. doi: 10.1073/pnas.1404870111.423453925349419 Open DOISearch in Google Scholar

Huxman, T. E. et al. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems, Oecologia, 141(2), pp. 254–268. doi: 10.1007/s00442-004-1682-4.15338414 Open DOISearch in Google Scholar

IPCC (2012). Climate Change 2014, Special Report of the Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781139177245.003. Open DOISearch in Google Scholar

J. L. Monteith (1977). Climate and the efficiency of crop production in Britain, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), pp. 277–294. doi: 10.1098/rstb.1977.0140. Open DOISearch in Google Scholar

Kroël-Dulay, G. et al. (2015). Increased sensitivity to climate change in disturbed ecosystems, Nature Communications, 6, pp. 1–7. doi: 10.1038/ncomms7682.25801187 Open DOISearch in Google Scholar

Leakey, A. D. B. et al. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE, Journal of Experimental Botany, 60(10), pp. 2859–2876. doi: 10.1093/jxb/erp096.19401412 Open DOISearch in Google Scholar

Liao, C., Clark, P. E. and DeGloria, S. D. (2018). Bush encroachment dynamics and rangeland management implications in southern Ethiopia, Ecology and Evolution, 8(23), pp. 11694–11703. doi: 10.1002/ece3.4621.630371130598767 Open DOISearch in Google Scholar

Luvuno, L. et al. (2018). Woody encroachment as a social-ecological regime shift, Sustainability (Switzerland), 10(7), pp. 1–16. doi: 10.3390/su10072221. Open DOISearch in Google Scholar

McDowell, N. G. and Allen, C. D. (2015). Darcy’s law predicts widespread forest mortality under climate warming, Nature Climate Change, 5(7), pp. 669–672. doi: 10.1038/nclimate2641. Open DOISearch in Google Scholar

MEA (2005). Ecosystems and human well-being, Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. doi: 10.5822/978-1-61091-484-0_1. Open DOISearch in Google Scholar

Medvigy, D. et al. (2009). Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2, Journal of Geophysical Research: Biogeosciences, 114(1). doi: 10.1029/2008JG000812. Open DOISearch in Google Scholar

Meinzer, F. C. and Zhu, J. (1998). Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species, Journal of Experimental Botany, 49(324), pp. 1227–1234. doi: 10.1093/jxb/49.324.1227. Open DOISearch in Google Scholar

Obermeier, W. et al. (2016). Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands, Geophysical Research Abstracts, 18, p. 14957. Search in Google Scholar

Dermody, O., Weltzin, J., Engel, E., Allen, P., Norby, R., (2007). How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant and Soil 301, 255-266.10.1007/s11104-007-9443-x Search in Google Scholar

Onofrio, D. D. et al. (2019). Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes (pp. 1–10). Retrieved December, 9th, 2018 from doi: 10.1038/s41598-019-38933-9.638284830787370 Open DOISearch in Google Scholar

Otto T. Solbrig, Ernesto Medina, and J. F. S. (1996). Determinants of Tropical Savannas, In Silva, D. T. S. E. M. J. F. (ed.) Biodiversity and Savanna Ecosystelll Processes A Global Perspective (pp. 31–44). Verlag Berlin Heidelberg: Springer. doi: 10.1017/CBO9781107415324.004. Open DOISearch in Google Scholar

Pau, S. et al. (2018). Tropical forest temperature thresholds for gross primary productivity, Ecosphere, 9(7), pp. 1–12. doi: 10.1002/ecs2.2311. Open DOISearch in Google Scholar

Piao, S. et al. (2014). Evidences for weakning relationship between interannual temperature variability and northern vegetation activity, Nature Communications (pp. 1–7). doi: 10.1038/ncomms6018.25318638 Open DOISearch in Google Scholar

Piao, S. et al. (2017). Weakening temperature control on the interannual variations of spring carbon uptake across northern lands, Nature Climate Change, 7(5), pp. 359–363. doi: 10.1038/nclimate3277. Open DOISearch in Google Scholar

Pellikka, P.K.E., V. Heikinheimo, J. Hietanen, E. Schäfer, M. Siljander, J. Heiskanen (2018). Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Applied Geography Volume 94, May 2018, Pages 178-189.10.1016/j.apgeog.2018.03.017 Search in Google Scholar

Norby, R. J., and Zak, D. R. (2011). Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual review of ecology, evolution, and systematics 42, 181-203.10.1146/annurev-ecolsys-102209-144647 Search in Google Scholar

Sala, O. E., Gherardi, L. A. and Peters, D. P. C. (2015). Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions, Climatic Change, 131(2), pp. 213–227. doi: 10.1007/s10584-015-1389-z. Open DOISearch in Google Scholar

Schwinning, S. and Sala, O. E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems, Oecologia, 141(2), pp. 211–220. doi: 10.1007/s00442-004-1520-8.15034778 Open DOISearch in Google Scholar

Seddon, A. W. R. et al. (2016). Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531(7593), pp. 229–232. doi: 10.1038/nature16986.26886790 Open DOISearch in Google Scholar

Wullschleger, S. D., Tschaplinski, T. J., Norby, R. J. (2002). Plant water relations at elevated CO2– implications for water-limited environments. Plant, Cell & Environment 25, 319-331.10.1046/j.1365-3040.2002.00796.x11841673 Search in Google Scholar

Smith, B., Prentice, I. C. and Sykes, M. T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space, Global Ecology and Biogeography, 10(6), pp. 621–637. doi: 10.1046/j.1466-822X.2001.00256.x. Open DOISearch in Google Scholar

Smith, M. D. et al. (2017). Assessing community and ecosystem sensitivity to climate change – toward a more comparative approach, Journal of Vegetation Science, 28(2), pp. 235–237. doi: 10.1111/jvs.12524. Open DOISearch in Google Scholar

S.A. Archer, E.M. Andersen, K.I. Predick, Susan Schwinning, Robert J. Steidl, and S. R. W. (2017). Woody Plant Encroachment: Causes and Consequences, Rangeland Systems, pp. 263–302. doi: 10.1007/978-3-319-46709-2_8. Open DOISearch in Google Scholar

Subbarao, G.V.; Ito, O. & Berry, W. (2005). Crop Radiation Use Efficiency and Photosynthate Formation-Avenues for Genetic Improvement. 2nd edn. Edited by M. Pessarakli. New York.: Taylor and Francis. Search in Google Scholar

Sühs, R. B., Giehl, E. L. H. and Peroni, N. (2020). Preventing traditional management can cause grassland loss within 30 years in southern Brazil, Scientific Reports, 10(1), pp. 1–9. doi: 10.1038/s41598-020-57564-z.697292831964935 Open DOISearch in Google Scholar

Taub, D. (2015). Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants’, Nature Education Knowledge. Search in Google Scholar

Traore, A. K. et al. (2014). 1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations, Remote Sensing, (August), pp. 8923–8944. doi: 10.3390/rs6098923. Open DOISearch in Google Scholar

Tucker, C. J. et al. (2005). An extended AVHRR 8-kni NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, International Journal of Remote Sensing, 26(20).10.1080/01431160500168686 Search in Google Scholar

Venter, Z. S., Cramer, M. D. and Hawkins, H. J. (2018). Drivers of woody plant encroachment over Africa, Nature Communications. US, 9(1), pp. 1–7. Springer. doi: 10.1038/s41467-018-04616-8.599589029891933 Open DOISearch in Google Scholar

Vicente-Serrano, S. M. et al. (2013). Response of vegetation to drought time-scales across global land biomes, Proceedings of the National Academy of Sciences of the United States of America, 110(1), pp. 52–57. doi: 10.1073/pnas.1207068110.353825323248309 Open DOISearch in Google Scholar

Vogel, A., Scherer-Lorenzen, M. and Weigelt, A. (2012). Grassland resistance and resilience after drought depends on management intensity and species richness, PLoS ONE, 7(5). doi: 10.1371/journal.pone.0036992.335396022615865 Open DOISearch in Google Scholar

Walker, A.P., De Kauwe, M.G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R.F., McMahon, S.M., Medlyn, B.E., Moore, D.J.P., Norby, R.J., Zaehle, S., Anderson-Teixeira, K.J., Battipaglia, G., Brienen, R.J.W., Cabugao, K.G., Cailleret, M., Campbell, E., Canadell, J.G., Ciais, P., Craig, M.E., Ellsworth, D.S., Farquhar, G.D., Fatichi, S., Fisher, J.B., Frank, D.C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B.A., Iversen, C.M., Joos, F., Jiang, M., Keenan, T.F., Knauer, J., Körner, C., Leshyk, V.O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T.R., Penuelas, J., Pongratz, J., Powell, A.S., Riutta, T., Sabot, M.E.B., Schleucher, J., Sitch, S., Smith, W.K., Sulman, B., Taylor, B., Terrer, C., Torn, M.S., Treseder, K.K., Trugman, A.T., Trumbore, S.E., van Mantgem, P.J., Voelker, S.L., Whelan, M.E. and Zuidema, P.A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol, 229: 2413-2445. https://doi.org/10.1111/nph.16866.32789857 Search in Google Scholar

Workie T.G. and Debela H.J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia, Global Ecology and Conservation, Volume 13, 2018, https://doi.org/10.1016/j.gecco.2017.e00366. Search in Google Scholar

Wu, X. et al. (2017). Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere, Geophysical Research Letters, 44(12), pp. 6173–6181. doi: 10.1002/2017GL073285. Open DOISearch in Google Scholar

Yang, Y. et al. (2016). Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests, Journal of Geophysical Research: Biogeosciences, 121(8), pp. 2125–2140. doi: 10.1002/2016JG003475. Open DOISearch in Google Scholar

Yuan, X. et al. (2015). Effects of precipitation intensity and temperature on ndvi-based grass change over northern china during the period from 1982 to 2011, Remote Sensing, 7(8), pp. 10164–10183. doi: 10.3390/rs70810164. Open DOISearch in Google Scholar

Yusuf, H. et al. (2011). Assessment of woody species encroachment in the grasslands of Nechisar National Park, Ethiopia, African Journal of Ecology, 49(4), pp. 397–409. doi: 10.1111/j.1365-2028.2011.01271.x. Open DOISearch in Google Scholar

Zeng, F. W. et al. (2013). Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) at global scales, Remote Sensing, 5(8), pp. 3918–3950. doi: 10.3390/rs5083918. Open DOISearch in Google Scholar

eISSN:
1805-4196
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Geosciences, other, Life Sciences, Ecology