1. bookVolume 11 (2018): Issue 3-4 (November 2018)
Journal Details
First Published
25 Apr 2013
Publication timeframe
2 times per year
access type Open Access

Future Projections of Water Scarcity in the Danube River Basin Due to Land Use, Water Demand and Climate Change

Published Online: 07 Dec 2018
Page range: 25 - 36
Received: 17 Sep 2018
Accepted: 31 Oct 2018
Journal Details
First Published
25 Apr 2013
Publication timeframe
2 times per year

This paper presents a state-of-the-art integrated model assessment to estimate the impacts of the 2°C global mean temperature increase and the 2061-2090 warming period on water scarcity in the Danube River Basin under the RCP8.5 scenario. The Water Exploitation Index Plus (WEI+) is used to calculate changes in both spatial extent and people exposed to water scarcity due to land use, water demand, population and climate change. Despite model and data uncertainties, the combined effects of projected land use, water demand and climate change show a decrease in the number of people exposed to water scarcity during the 2°C warming period and an increase in the 2061-2090 period in the Danube River Basin. However, the projected population change results in a decrease of exposed people in both warming periods. Regions with population growth, in the northwestern part of the Danube River Basin experience low water scarcity or a decrease in water scarcity. The largest number of people vulnerable to water scarcity within the Danube River Basin are living in the Great Morava, Bulgarian Danube and Romanian Danube. There, the combined effects of land use, water demand and climate change exacerbate already existing water scarce areas during the 2°C warming period and towards the end of the century new water scarce areas are created. Although less critical during the 2°C warming period, adjacent regions such as the Tisza, Middle Danube and Siret-Prut are susceptible to experience similar exposure to water scarcity within the 2061-2090 period. Climate change is the most important driver for the increase in water scarcity in these regions, but the strengthening effect of water demand (energy sector) and dampening effect of land use change (urbanization) does play a role as well. Therefore, while preparing for times of increased pressures on the water supply it would be advisable for several economic sectors to explore and implement water efficiency measures.


Alcamo, J., Flörke, M., Märker, M. 2007. Future long-term changes in global water resources driven by socioeconomic and climatic changes. Hydrolog. Sci. J. 52, 247–275. DOI: 10.1623/hysj. DOISearch in Google Scholar

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F. 2013. GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci. 17, 1161–1175. DOI: 10.5194/hess-17-1161-2013.10.5194/hess-17-1161-2013Open DOISearch in Google Scholar

Alfieri, L., Burek, P., Feyen, L., Forzieri, G. 2015. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 19, 2247–2260. DOI: 10.5194/hessd-12-1119-2015.10.5194/hessd-12-1119-2015Open DOISearch in Google Scholar

Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., et al. 2017. Global projections of river flood risk in a warmer world. Earths Future 5(2), 171–182. DOI: 10.1002/2016ef00048510.1002/2016ef000485Open DOISearch in Google Scholar

Arnell, N. W., van Vuuren, D. P., Isaac, M. 2011. The implications of climate policy for the impacts of climate change on global water resources. Glob. Environ. Change 21, 592–603. DOI: 10.1016/j.gloenvcha.2011.01.01510.1016/j.gloenvcha.2011.01.015Open DOISearch in Google Scholar

Arnell, N. W., et al. 2013. A global assessment of the effects of climate policy on the impacts of climate change. Nat. Clim. Change 3, 512–519. DOI: 10.1038/nclimate179310.1038/nclimate1793Open DOISearch in Google Scholar

Arnell, N. W., Lloyd-Hughes, B. 2014. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim. Change 122, 127–140. DOI: 10.1007/s10584-013-0948-410.1007/s10584-013-0948-4Open DOISearch in Google Scholar

Baranzelli, C., et al. 2014. The reference scenario in the LUISA platform – Updated configuration 2014 towards a common baseline scenario for EC impact assessment procedures. Report EUR 27019 EN, Luxembourg: Publications office of the EU.Search in Google Scholar

Bartholy, J., Pongrácz, R., Pieczka, I. 2014. How the climate will change in this century? Hungarian Geographical Bulletin 63, 55–67. DOI: 10.15201/hungeobull.63.1.5Search in Google Scholar

Batista e Silva, F., Gallego, J., Lavalle, C. 2013. A high-resolution population grid map for Europe, J. Maps 9, 16–28, DOI: 10.1080/17445647.2013.764830.10.1080/17445647.2013.764830Open DOISearch in Google Scholar

Beniston, M. 2004. The 2003 heatwave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31, 2022–2026. DOI: 10.1029/2003gl01885710.1029/2003gl018857Open DOISearch in Google Scholar

Bernhard, J., Reynaud, A., De Roo, A., Karssenberg, D., De Jong, S. 2018a. Household water use in Europe at regional scale: analysis of trends and quantification of main drivers, Under review.Search in Google Scholar

Bernhard, J., Reynaud, A., De Roo, A., Karssenberg, D., De Jong, S. 2018b. Mapping industrial water use and water productivity levels in Europe at high sectoral and spatial detail, Under review.Search in Google Scholar

Bisselink, B., Zambrano-Bigiarini, M., Burek, P., de Roo, A. 2016. Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions. J. Hydrol. Reg. Stud. 8, 112–129, DOI: 10.1016/j.ejrh.2016.09.003.Search in Google Scholar

Bisselink, B., Bernhard, J., Gelati, E., Adamovic, M., Jacobs, C., Mentaschi, L., Lavalle, C., De Roo, A. 2018. Impact of a changing climate, land use, and water usage on water resources in the Danube river basin, EUR 29228 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-85888-8, DOI: 10.2760/561327, JRC111817.Search in Google Scholar

Burek, P., De Roo, A., van der Knijff, J. 2013. LISFLOOD – Distributed Water Balance and Flood Simulation Model - Revised User Manual. EUR 26162 10/2013; Publications Office of the European Union. Directorate-General Joint Research Centre, Institute for Environment and Sustainability, ISBN: 978-92-79-33190-9.Search in Google Scholar

Büttner G, Kosztra B. 2007. CLC2006 Technical guidelines. Technical Report No. 17 / 2007. EEA. Available from http://www.eea.europa.eu/publications/technical_report_2007_17.Search in Google Scholar

De Roo, A. P. J., Wesseling, C. G., Van Deursen, W.P.A. 2000. Physically-based river basin modelling within a GIS: The LISFLOOD model. Hydrological Processes 14, 1981–1992. DOI:10.1002/1099-1085(20000815/30)14:11/12<1981::AIDHY P49>3.0.CO;2-F10.1002/1099-1085(20000815/30)14:11/12<1981::AIDHYP49>3.0.CO;2-FOpen DOISearch in Google Scholar

Dosio, A., Paruolo, P., Rojas, R. 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal, Journal of Geophysical Research D: Atmospheres 117(17). DOI: 10.1029/2012JD017968.10.1029/2012JD017968Open DOISearch in Google Scholar

Dottori, F., Kalas, M., Salamon, P., Bianchi, A., Alfieri, L., Feyen, L. 2017. An operational procedure for rapid flood risk assessment in Europe. Nat. Hazards Earth Syst. Sci. 17, 1111–1126. DOI:10.5194/nhess-17-1111-2017.10.5194/nhess-17-1111-2017Open DOISearch in Google Scholar

Emerton, R., Zsoter, E., Arnal, L., Cloke, H. L., Muraro, D., Prudhomme, C., Stephens, E. M., Salamon, P., Pappenberger, F.2018. Developing a global operational seasonal hydrometeorological forecasting system: GloFAS-Seasonal v1.0. Geosci. Model Dev. 11, 3327–3346. DOI: 10.5194/gmd-11-3327-2018.Search in Google Scholar

Faergemann, H. 2012. Update on water scarcity and droughts indicator development (EEA – European Environmental Agency).Search in Google Scholar

Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., CarmonaMoreno, C., De Roo, A., Gonzalez-Sanchez, D., Bidoglio, G. 2018. An innovative approach to the assessment of hydropolitical risk: A spatially explicit, data driven indicator of hydropolitical issues, Global Environmental Change, 52, 286–313. DOI: 10.1016/j.gloenvcha.2018. DOISearch in Google Scholar

Forzieri, G., Feyen, L., Rojas, R., et al. 2014. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108. DOI: 10.5194/hess-18-85-2014.10.5194/hess-18-85-2014Open DOISearch in Google Scholar

Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., Migliavacca, M., Bianchi, A., Rojas, R., Cid, A. 2016. Multihazard assessment in Europe under climate change. Clim Change 137, 105–119. DOI: 10.1007/s10584-016-1661-x.10.1007/s10584-016-1661-xOpen DOISearch in Google Scholar

Gosling, S. N., Arnell, N. W. 2013. A global assessment of the impact of climate change on water scarcity. Clim. Change 1–15. DOI: 10.1007/s10584-013-0853-x10.1007/s10584-013-0853-xOpen DOISearch in Google Scholar

Haddeland, I., et al. 2014. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256. DOI: 10.1073/pnas.122247511010.1073/pnas.1222475110Open DOISearch in Google Scholar

Hanasaki, N., et al. 2013. A global water scarcity assessment under shared socio-economic pathways: 2. Water availability and scarcity. Hydrol. Earth Syst. Sci. 17, 2393–413. DOI: 10.5194/hess-17-2393-201310.5194/hess-17-2393-2013Open DOISearch in Google Scholar

Hlásny, T., Trombik, J., Dobor, L., Barcza, Z., Barka, I. 2016. Future climate of the Carpathians. Reg. Environ. Change 16, 1495–1506. DOI: 10.1007/s10113-015-0890-210.1007/s10113-015-0890-2Open DOISearch in Google Scholar

ICPDR, 2013. ICPDR Strategy on Adaptation to Climate Change. 42 p.Search in Google Scholar

ICPDR, 2015. The Danube River Basin District Management Plan. Part A-Basin-wide Overview. Update 2015. 164 p.Search in Google Scholar

ICPDR, 2018. Danube River Basin Climate Change Adaptation. Revision and Update of the Danube Study. 115 p.Search in Google Scholar

Jacob, D., et al. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ.Change 14, 563–578. DOI:10.1007/s10113-013-0499-2.10.1007/s10113-013-0499-2Open DOISearch in Google Scholar

Jacobs-Crisioni, C., Diogo, V., Perpiña Castillo, C., Baranzelli, C., Batista e Silva, F., Rosina, K., Kavalov, B., Lavalle, C. 2017. TheLUISA Territorial Reference Scenario 2017: A technical description, Publications Office of the European Union, Luxembourg.Search in Google Scholar

Karabulut, A., Egoh, B. N., Lanzanova, D., Grizzetti, B., Bidoglio, G., Pagliero, L., Bouraoui, F., Aloe, A., Reynaud, A., Meas, J., Vandecasteele, I., Mubarek, S. 2016. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube River Basin. Ecosyst. Serv. 17, 278–292. DOI: 10.1016/j.ecoser.2015.08.00210.1016/j.ecoser.2015.08.002Open DOISearch in Google Scholar

Kiguchi, M., Shen, Y., Kanae, S., Oki, T. 2015. Reevaluation of future water stress due to socio-economic and climate factors under a warming climate. Hydrol. Sci. J. 60, 14–29. DOI: 10.1080/02626667.2014.88806710.1080/02626667.2014.888067Open DOISearch in Google Scholar

Laaha, G., Parajka, J., Viglione, A., Koffler, D., Haslinger, K., Schöner, W., Zehetgruber, J., et al. 2016. A three-pillar approach to assessing climate impacts on low flows. Hydrology and Earth System Sciences 20, 3967. DOI: 10.5194/hess-20-3967-201610.5194/hess-20-3967-2016Open DOISearch in Google Scholar

Lavalle, C., Baranzelli, C., Batista e Silva, F., Mubareka, S., Rocha Gomes, C., Koomen, E., Hilferink, M. 2011. A high resolution land use/cover modelling framework for Europe. In: ICCSA 2011, Part I, LNCS 6782, 60–75.Search in Google Scholar

Lehner, B., Döll, P., Alcamo, J., Henrichs, T., Kaspar, F. 2006. Estimating the Impact of Global Change on Flood and Drought Risks in Europe: A Continental, Integrated Analysis. Climatic Change 75, 273–299, DOI:10.1007/s10584-006-6338-4.10.1007/s10584-006-6338-4Open DOISearch in Google Scholar

Malagó, A., Bouraoui, F., Vigiak, O., Grizetti, B., Pastori, M. 2017 Modelling water and nutrient fluxes in the Danube River Basin. Science of The Total Environment 603–604, 196–218. DOI: 10.1016/j.scitotenv.2017.05.24210.1016/j.scitotenv.2017.05.242Open DOISearch in Google Scholar

Moss, R., et al. 2010. The next generation of scenarios for climate change research and assessment, Nature 463, 747–756. DOI: 10.1038/nature0882310.1038/08823Open DOISearch in Google Scholar

Mubareka, S., Maes, J., Lavalle, C., De Roo, A. 2013. Estimation of water requirements by livestock in Europe. Ecosyst. Serv. 4, 139–145. DOI: 10.1016/j.ecoser.2013.03.00110.1016/j.ecoser.2013.03.001Open DOISearch in Google Scholar

Pieczka, I., Pongrácz, R., Bartholy, J. 2011. Comparison of Simulated Trends of Regional Climate Change in the Carpathian Basin for the 21st Century Using Three Different Emission Scenarios. Acta Silvatica et Lignaria Hungarica 7, 9–22.Search in Google Scholar

Prudhomme, C., et al. 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267. DOI: 10.1073/pnas.122247311010.1073/pnas.1222473110Open DOISearch in Google Scholar

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., Rafai, P. 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33–57, DOI:10.1007/s10584-011-0149-y.10.1007/s10584-011-0149-yOpen DOISearch in Google Scholar

Schewe, J., et al. 2014. Multimodel assessment of water scarcity under climate change Proc. Natl Acad. Sci. USA 111, 3245–3250. DOI: 10.1073/pnas.122246011010.1073/pnas.1222460110Open DOISearch in Google Scholar

Schlosser, C. A., Strzepek, K., Gao, X., Fant, C., Blanc, E., Paltsev, S., Jacoby, H., Reily, J. 2014. The future of global water stress: an integrated assessment. Earth’s Future 2, 341–361. DOI: 10.1002/2014ef00023810.1002/2014ef000238Open DOISearch in Google Scholar

Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., Bierkens, M. F. P. 2012. Global patterns of change in discharge regimes for 2100. Hydrol. Earth Syst. Sci. 16, 1047–1062. DOI:10.5194/hess-16-1047-2012.10.5194/hess-16-1047-2012Open DOISearch in Google Scholar

Stagl, J.C., Hattermann, F.F. 2015. Impacts of climate change on the hydrological regime of the Danube River and its tributaries using an ensemble of climate scenarios. Water 7, 6139–6172. DOI: 10.3390/w711613910.3390/w7116139Open DOISearch in Google Scholar

Stahl, K. 2001. Hydrological Drought – a Study across Europe, PhD thesis, Freiburger Schriften zur hydrologie (No. 15), Institut fur Hydrologies, Universitat Freiburg, Freiburg.Search in Google Scholar

Thiemig, V., Bisselink, B., Pappenberger, F., Thielen, J. 2015. A panAfrican medium-range ensemble flood forecast system. Hydrol. Earth Syst. Sci. 19, 3365–3385. DOI: 10.5194/hess-19-3365-2015.10.5194/hess-19-3365-2015Open DOISearch in Google Scholar

Vandecasteele, I., Bianchi, A., Batista e Silva, F., Lavalle, C., Batelaan, O. 2014. Mapping current and future European public water withdrawals and consumption. Hydrol. Earth Syst. Sci. 18, 407–416. DOI:10.5194/hess-18-407-2014.10.5194/hess-18-407-2014Open DOISearch in Google Scholar

van der Knijff J.M., Younis, J., De Roo, A.P.J. 2010. LISFLOOD: A GIS-based distributed model for river-basin scale water balance and flood simulation, International Journal of Geographical Information Science 24(2), 189–212. DOI: 10.1080/1365881080254915410.1080/13658810802549154Open DOISearch in Google Scholar

van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., Kabat, P. 2013. Global river discharge and water temperature under climate change. Glob. Environ. Change 23, 450–464. DOI: 10.1016/j.gloenvcha.2012.11.00210.1016/j.gloenvcha.2012.11.002Open DOISearch in Google Scholar

Vörösmarty, C. J., Green, P., Salisbury, J., Lammers, R. B. 2000. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 289, 284–288, DOI:10.1126/science.289.5477.284.10.1126/.289.5477.284Open DOISearch in Google Scholar

Wada, Y., Gleeson, T., Esnault, L. 2014. Wedge approach to water stress. Nat. Geosci. 7, 615–617. DOI: 10.1038/ngeo22410.1038/ngeo224Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo