Open Access

Magnetic properties of hematite (α − Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution


Cite

[1] G. Kandasamy, A. Sudame, P. Bhati, A. Chakrabarty, S. N. Kale, and D. Maity, “Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids”, Journal of colloid and interface science, vol. 514, pp. 534–543, 2018.10.1016/j.jcis.2017.12.06429289736Search in Google Scholar

[2] G. Kandasamy, A. Sudame, T. Luthra, K. Saini and D. Maity, “Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment”, ACS Omega, vol. 3, pp. 3991–4005, 2018.Search in Google Scholar

[3] S. M. Suturin, A. M. Korovin, S. V. Gastev, M. P. Volkov, A. A. Sitnikova, D. A. Kirilenko, M. Tabuchi and N. S. Sokolov, “Tunable polymorphism of epitaxial iron oxides in the four-in-one ferroic-on-GaN system with magnetically ordered α-, γ-, ε-Fe2O3, and Fe3O4 layers”, Physical Review Materials, vol. 2, pp. 073-403, 2018.10.1103/PhysRevMaterials.2.073403Search in Google Scholar

[4] M. Tadic, I. Milosevic, S. Kralj, M. Mitric, D. Makovec, M. L. Saboungi and L. Motte, “Synthesis of metastable hard-magnetic ε-Fe2O3 nanoparticles from silica-coated akaganeite nanorods”, Nanoscale, vol. 9, pp. 10579–10584, 2017.Search in Google Scholar

[5] M. Tadic, S. Kralj and L. Kopanja, “Synthesis, particle shape characterization and surface modification of superparamagnetic iron oxide nanochains”, Materials Characterization, vol. 148, pp. 123–133, 2019.10.1016/j.matchar.2018.12.014Search in Google Scholar

[6] M. Tadic, S. Kralj, Y. Lalatonne and L. Motte, “Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties”, Applied Surface Science, vol. 476, pp. 641–646, 2019.10.1016/j.apsusc.2019.01.098Search in Google Scholar

[7] J. Matmin, I. Affendi, S. Ibrahim and S. Endud, “Additive-free rice starch-assisted synthesis of spherical nanostructured hematite for degradation of dye contaminant”, Nanomaterials, vol. 8, pp. 702, 2018.10.3390/nano8090702616327630205567Search in Google Scholar

[8] A. Rufus, N. Sreeju, and D. Philip, “Size tunable biosynthesis and luminescence quenching of nanostructured hematite (α-Fe2O3) for catalytic degradation of organic pollutants”, Journal of Physics and Chemistry of Solids, vol. 124, pp. 221–234, 2019.10.1016/j.jpcs.2018.09.026Search in Google Scholar

[9] A. S. Hassanien and A. A. Akl, “Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures”, Applied Physics A, vol. 124, pp. 752, 2018.10.1007/s00339-018-2180-6Search in Google Scholar

[10] Z. Shaoqiang, T. Dong, Z. Geng, H. Lin, Z. Hua, H. Jun, L. Yi, L. Minxia, H. Yaohua and Z. Wei, “The influence of grain size on the magnetic properties of Fe3O4 nanocrystals synthesized by solvothermal method”, Journal of Sol-Gel Science and Technology, pp. 1–8, 2019.10.1007/s10971-018-4909-2Search in Google Scholar

[11] J. Mohapatra, F. Zeng, K. Elkins, M. Xing, M. Ghimire, S. Yoon, S. R. Mishra and J. P. Liu, “Size-dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: scaling laws across the superparamagnetic size”, Physical Chemistry Chemical Physics, vol. 20, pp. 12879–12887, 2018.Search in Google Scholar

[12] Z. Nemati, J. Alonso, I. Rodrigo, R. Das, E. Garaio, J. A. García, I. Orue, M. H. Phan and H. Srikanth, “Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size”, The Journal of Physical Chemistry C, vol. 122, pp. 2367–2381, 2018.Search in Google Scholar

[13] B. Park, B. H. Kim and T. Yu, “Synthesis of spherical and cubic magnetic iron oxide nanocrystals at low temperature in air”, Journal of colloid and interface science, vol. 518, pp. 27–33, 2018.10.1016/j.jcis.2018.02.02629438861Search in Google Scholar

[14] M. Bhushan, Y. Kumar, L. Periyasamy and A. K. Viswanath, “Facile synthesis of Fe/Zn oxide nanocomposites and study of their structural, magnetic, thermal, antibacterial and cytotoxic properties”, Materials Chemistry and Physics, vol. 209, pp. 233–248, 2018.10.1016/j.matchemphys.2018.02.002Search in Google Scholar

[15] A. A. Ati, “Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale”, Journal of Materials Science: Materials in Electronics, vol. 29, pp. 12010–12021, 2018.Search in Google Scholar

[16] E. Aubry, T. Liu, A. Dekens, F. Perry, S. Mangin, T. Hauet and A. Billard, “Synthesis of iron oxide films by reactive magnetron sputtering assisted by plasma emission monitoring”, Materials Chemistry and Physics, vol. 223, pp. 360–365, 2019.10.1016/j.matchemphys.2018.11.010Search in Google Scholar

[17] R. E. Elshater, G. Kawamura, F. Fakhry, T. Meaz, M. A. Amer and A. Matsuda, “Structural phase transition of spinel to hematite of as-prepared Fe2+-Cr nanoferrites by sintering temperature”, Measurement, vol. 132, pp. 272–281, 2019.10.1016/j.measurement.2018.09.021Search in Google Scholar

[18] D. Kubániová, L. Kubíčková, T. Kmječ, K. Závěta, D Nižňanský, P. Brázda, M. Klementová and J. Kohout, “Hematite: Morin temperature of nanoparticles with different size”, Journal of Magnetism and Magnetic Materials, vol. 475, pp. 611–619, 2019.10.1016/j.jmmm.2018.11.126Search in Google Scholar

[19] M. Tadic, S. Kralj, M. Jagodic, D. Hanzel and D. Makovec, “Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment”, Applied Surface Science, vol. 322, pp. 255–264, 2014.10.1016/j.apsusc.2014.09.181Search in Google Scholar

[20] A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar and A. Gadri, “Synthesis, photoluminescence and Magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods”, Physica E: Low-dimensional Systems and Nanostructures, vol. 101, pp. 212–219, 2018.10.1016/j.physe.2018.04.009Search in Google Scholar

[21] O. S. Ivanova, R. D. Ivantsov, I. S. Edelman, E. A. Petrakovskaja, D. A. Velikanov, Y. V. Zubavichus, V. I. Zaikovskii and S. A. Stepanov, “Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd”, Journal of Magnetism and Magnetic Materials, vol. 401, pp. 880–889, 2016.10.1016/j.jmmm.2015.10.126Search in Google Scholar

[22] A. Nikitin, M. Khramtsov, A. Garanina, P. Mogilnikov, N. Sviridenkova, I. Shchetinin, A. Savchenko, M. Abakumov and A. Majouga, “Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia”, Journal of Magnetism and Magnetic Materials, vol. 469, pp. 443–449, 2019.10.1016/j.jmmm.2018.09.014Search in Google Scholar

[23] M. P. Zaytseva, A. G. Muradova, A. I. Sharapaev, E. V. Yurtov, I. S. Grebennikov and A. G. Savchenko, “Fe3O4/SiO2 Core Shell Nanostructures: Preparation and Characterization”, Russian Journal of Inorganic Chemistry, vol. 63, pp. 1684–1688, 2018.Search in Google Scholar

[24] D. Z. Tulebayeva, A. L. Kozlovskiy, I. V. Korolkov, Y. G. Gorin, A. V. Kazantsev, L. Abylgazina, E. E. Shumskaya, E. Y. Kaniukov and M. V. Zdorovets, “Modification of Fe3O4 nanoparticles with carboranes”, Materials Research Express, vol. 5, pp. 105011, 2018.Search in Google Scholar

[25] M. V. Efremova, Y. A. Nalench, E. Myrovali, A. S. Garanina, I. S. Grebennikov, P. K. Gifer, M. A. Abakumov, M. Spasova, M. Angelakeris, A. G. Savchenko and M. Farle, “Size-selected Fe3 O4 Au hybrid nanoparticles for improved magnetism-based theranostics”, Beilstein journal of nanotechnology, vol. 9, pp. 2684–2699, 2018.Search in Google Scholar

[26] P. Veverka, M. Pashchenko, L. Kubíčková, J. Kuličková, Z. Jirák, R. Havelek, K. Královec, J. Kohout and O. Kaman, “Rod-like particles of silica-coated maghemite: synthesis via akaganeite, characterization and biological properties”, Journal of Magnetism and Magnetic Materials, vol. 476, pp. 149–156, 2019.10.1016/j.jmmm.2018.12.037Search in Google Scholar

[27] I. Shanenkov, A. Sivkov, A. Ivashutenko, T. Medvedeva and I. Shchetinin, “High-energy plasma dynamic synthesis of multi-phase iron oxides containing Fe3O4 and ε-Fe2O3 with possibility of controlling their phase composition”, Journal of Alloys and Compounds, vol. 774, pp. 637–645, 2019.10.1016/j.jallcom.2018.10.019Search in Google Scholar

[28] S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Y. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman and O. N. Martyanov, “α-Fe2O3 nanoparticles embedded in silica xerogelMagnetic metamaterial”, Ceramics International, vol. 44, pp. 17852–17857, 2018.Search in Google Scholar

[29] M. Krajewski, K. Brzozka, M. Tokarczyk, G. Kowalski, S. Lewinska, A. Slawska-Waniewska, W. S. Lin and H. M. Lin, “Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles”, Journal of Magnetism and Magnetic Materials, vol. 458, pp. 349–354, 2018.10.1016/j.jmmm.2018.03.047Search in Google Scholar

[30] H. Mansour, R. Bargougui, C. Autret-Lambert, A. Gadri and S. Ammar, “Co-precipitation synthesis and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities”, Journal of Physics and Chemistry of Solids, vol. 114, pp. 1–7, 2018.10.1016/j.jpcs.2017.11.013Search in Google Scholar

[31] F. Bouhjar, M. Mollar, S. Ullah, B. Marí and B. Bessais, “Influence of a Compact α-Fe2O3 Layer on the Photovoltaic Performance of Perovskite-Based Solar Cells”, Journal of The Electrochemical Society, vol. 165(2), pp. H30–H38, 2018.10.1149/2.1131802jesSearch in Google Scholar

[32] C. Busabok, W. Khongwong, P. Somwongsa, P. Ngernchuklin, A. Saensing and S. Kanchanasutha, “Preparation of Near-Infrared (NIR) Reflective Pigment by Solid State Reaction between Fe2O3 and Al2O3”, Key Engineering Materials, vol. 766, pp. 127–132, 2018.10.4028/www.scientific.net/KEM.766.127Search in Google Scholar

[33] J. Ji, Y. Huang, J Yin, X. Zhao, X. Cheng, S. He, X. Li, J. He and J. Liu, “Synthesis and Electromagnetic and Microwave Absorption Properties of Monodispersive Fe3O4/α-Fe2O3 Composites”, ACS Applied Nano Materials, vol. 1, pp. 3935–3944, 2018.Search in Google Scholar

[34] L. Chen, X. Zuo, S. Yang, T. Cai and D. Ding, “Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate”, Chemical Engineering Journal, vol. 359, pp. 373–384, 2019.10.1016/j.cej.2018.11.120Search in Google Scholar

[35] H. Xu, X. Zhang and Y. Zhang, “Modification of biochar by Fe2O3 for the removal of pyridine and quinoline”, Environmental technology, vol. 39, pp. 1470–1480, 2018.Search in Google Scholar

[36] E. Dai, P. Wang, Y. Ye, Y. Cai, J. Liu and C. Liang, “Ultrafine nanoparticles conglomerated α-Fe2O3 nanospheres with excellent gas-sensing performance to ethanol molecules”, Materials Letters, vol. 211, pp. 239–242, 2018.10.1016/j.matlet.2017.10.008Search in Google Scholar

[37] H. Tokoro, W. Tarora, A. Namai, M. Yoshikiyo and S. I. Ohkoshi, “Direct Observation of Chemical Conversion from Fe3O4 to ε-Fe2O3 by a Nanosize Wet Process”, Chemistry of Materials, vol. 30, pp. 2888–2894, 2018.Search in Google Scholar

[38] C. Dubreil, O. Sainte Catherine, Y. Lalatonne, C. Journé, P. Ou, P. van Endert. and L. Motte, “Tolerogenic iron oxide nanoparticles in type 1 diabetes: biodistribution and pharmacokinetics studies in nonobese diabetic mice”, Small, vol. 14, pp. 1802053, 2018.Search in Google Scholar

[39] J. Gupta, A. Prakash, M. K. Jaiswal, A. Agarrwal and D. Bahadur, “Superparamagnetic iron oxide-reduced graphene oxide nanohybrid-a vehicle for targeted drug delivery and hyperthermia treatment of cancer”, Journal of Magnetism and Magnetic Materials, vol. 448, pp. 332–338, 2018.10.1016/j.jmmm.2017.05.084Search in Google Scholar

[40] A. S. Teja and P. Y. Koh, “Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials”, vol. 55, pp.22–45, 2009.10.1016/j.pcrysgrow.2008.08.003Search in Google Scholar

[41] M. Tadic, D. Markovic, V. Spasojevic, V. Kusigerski, M. Remškar, J. Pirnat and Z. Jagličic, “Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matrix”, Journal of alloys and compounds, vol. 441, pp. 291–296, 2007.10.1016/j.jallcom.2006.09.099Search in Google Scholar

[42] M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic and V. Spasojevic, “High concentration of hematite nanoparticles in a silica matrix: structural and magnetic properties”, Journal of Magnetism and Magnetic Materials, vol. 321, pp. 12–16, 2009.10.1016/j.jmmm.2008.07.006Search in Google Scholar

[43] H. M. Lu and X. K. Meng, “Morin temperature and Néel temperature of hematite nanocrystals”, The Journal of Physical Chemistry C, vol. 114, pp. 21291–21295, 2010.Search in Google Scholar

[44] M. Tadic, M. Panjan, V. Damnjanovic and I. Milosevic, “Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method”, Applied Surface Science, vol. 320, pp. 183–187, 2014.10.1016/j.apsusc.2014.08.193Search in Google Scholar

[45] L. Kopanja, I. Milosevic, M. Panjan, V. Damnjanovic and M. Tadic, “Solgel combustion synthesis, particle shape analysis and magnetic properties of hematite (α-Fe2O3) nanoparticles embedded in an amorphous silica matrix”, Applied Surface Science, vol. 362, pp. 380–386, 2016.10.1016/j.apsusc.2015.11.238Search in Google Scholar

[46] J. Fock, M. F. Hansen, C. Frandsen and S. Morup, “On the interpretation of Mössbauer spectra of magnetic nanoparticles”, Journal of Magnetism and Magnetic Materials, vol. 445, pp. 11–21, 2018.10.1016/j.jmmm.2017.08.070Search in Google Scholar

[47] D. Trpkov, M. Panjan, L. Kopanja and M. Tadic, “Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube-and sphere-like superstructures”, Applied Surface Science, vol. 457, pp. 427–438, 2018.10.1016/j.apsusc.2018.06.224Search in Google Scholar

[48] K. C. Souza, D. S. M. Nelcy and M. B. S. Edésia, “Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia”, Journal of sol-gel science and technology, vol. 53, pp. 418–427, 2010.10.1007/s10971-009-2115-ySearch in Google Scholar

[49] S. Kralj, M. Drofenik and D. Makovec, “Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups”, Journal of Nanoparticle Research, vol. 13, pp. 2829–2841, 2011.Search in Google Scholar

[50] P. Innocenzi, “Infrared spectroscopy of solgel derived silica-based films: a spectra-microstructure overview”, Journal of Non-Crystalline Solids, vol. 316, pp. 309–319, 2003.10.1016/S0022-3093(02)01637-XSearch in Google Scholar

[51] S. Sun, “Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles”, Advanced Materials, vol. 18, pp. 393–403, 2006.10.1002/adma.200501464Search in Google Scholar

[52] M. Satheesh, A. R. Paloly, C. K. Krishna Sagar, K. G. Suresh and M. J. Bushiri, “Improved Coercivity of Solvothermally Grown Hematite (α-Fe2O3) and Hematite/Graphene Oxide Nanocomposites (α-Fe2O3/GO) at Low Temperature”, Physica status solidi A, vol. 215, pp. 1700705, 2018.Search in Google Scholar

[53] M. M. S. Sanad and M. M. Rashad, “Magnetic properties of hematite-titania nanocomposites from ilmenite leachant solutions”, Journal of Electronic Materials, vol. 46, pp. 4426–4434, 2017.Search in Google Scholar

[54] M. Tadić, N. Čitaković, M. Panjan, Z. Stojanovic, D. Marković and V. Spasojevi, “Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles”, Journal of alloys and compounds, vol. 509, pp. 7639–7644, 2011.Search in Google Scholar

[55] M. Tadic, N. Citakovic, M. Panjan, B. Stanojevic, D. Markovic, D. Jovanovic and V. Spasojevic, “Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) super-structure with high coercivity”, Journal of Alloys and Compounds, vol. 543, pp. 118–124, 2012.10.1016/j.jallcom.2012.07.047Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other