Open Access

World of earthworms with pesticides and insecticides


Cite

Aktar W, Sengupta D, Chowdhury A. (2009). Impact of pesticides uses in agriculture: their benefits and hazards. Interdisc Toxicol2(1): 1–12.10.2478/v10102-009-0001-7Search in Google Scholar

Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A. (2013). Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere90: 2674–2682.10.1016/j.chemosphere.2012.11.046Search in Google Scholar

Agropages. (2015). Markets and Markets Research Private Limited. http://report.agropages.com/ReportDetail-1875.htm.Search in Google Scholar

Aveling C. (1981). The role of Anthocoris species (Hemiptera: Anthocoridae) in the integrated control of the damson-hop aphid (Phorodon humuli). Annals of Appl Biol97(2): 143–153.10.1111/j.1744-7348.1981.tb03007.xSearch in Google Scholar

Baishya K. (2015). Impact of agrochemicals application on soil quality degradation—a review. ICSTM. pp. 778–786.Search in Google Scholar

Bertrand M, Barot S, Boulin, Whalen J, de Oliveira T, Roger-Estrade J. (2015). Earthworm services for cropping systems. A Review. Agron Sustain Dev35: 553–567.10.1007/s13593-014-0269-7Search in Google Scholar

Bhaduria T, Saxena KG. (2010). Role of Earthworms in Soil Fertility Maintenance through the Production of Biogenic Structures. Appl and Environ Soil Sci. pp.7.10.1155/2010/816073Search in Google Scholar

Bhattacharya A, Sahu SK. (2013). Acute Toxicity of Dimethoate on soil health: A Study of its impact on Earthworm. In. J Biosci pp. 98–106.10.12692/ijb/3.7.98-106Search in Google Scholar

Bindesbol AM, Bayley M, Damgaard C and Holmstrup M. (2009). Impacts of heavy metals PAHs and pesticides on freeze tolerance of the earthworm Dendrobaena octaedra. Environ. Toxicol. Chem28: 2341–2347.10.1897/09-078.1Search in Google Scholar

Booth LH, O’Halloran K. (2001). A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environ Toxicol Chem20: 2494–2502.10.1002/etc.5620201115Search in Google Scholar

Bouché MB. (1977). Stratégies lombriciennes. In: Lohm, U., Persson, T.G. (Eds.), SoilOrganisms as Components of Ecosystems, Ecol Bull, Stockholm, pp. 122–132.Search in Google Scholar

Bustos-Obregón E, Goicochea RI. (2002). Pesticide soil contamination mainly affects earthworm male reproductive parameters. Asian J of Andro4(3): 195–200.Search in Google Scholar

Buch AC, Brown GG Niva CC, Sautter KD, Sousa JP. (2013). Toxicity of three pesticices commonly used in Brazil to Pontoscolex corethrurus (Muller, 1857) and Eisenia andrei (bouche, 1972). App Soil Ecol69: 32–38.10.1016/j.apsoil.2012.12.011Search in Google Scholar

Capowiez Y, Rault M, Costagliolia G, Mazzia C. (2005). Lethal and sublethal effects of imidacloprid on two earthworm species (Aporrectodea nocturnal and Allolobophera icterica). Biol and Ferti of Soil41(3): 135–143.10.1007/s00374-004-0829-0Search in Google Scholar

Capowiez Y, Bastardie F, Costagliolia G. (2006). Sublethal effects of Imidacloprid on burrowing behavior of two earthworm species L: Modification of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil. Sol Biol and Biochem38(2): 285–293.10.1016/j.soilbio.2005.05.014Search in Google Scholar

Capoweiz Y, Dittbrenner N, Rault M, Triebskorn R, Hedde M, Mazzia C. (2010). Earthworm cast production as a new behavioural biomarker for toxicity testing. Environ. Pollut158: 388–393.10.1016/j.envpol.2009.09.003Search in Google Scholar

Caselli F, Gastaldi L, Gambi N, Fabbri E. (2006). In vitro characterization of cholinesterases in the earthworm Eisenia andrei. Comp Biochem Physiol C: Toxicol Pharmacol143: 416–421.10.1016/j.cbpc.2006.04.003Search in Google Scholar

Cathey B. (1982). Comparitive toxicities of five insecticides to the earthworm Lumbricus terrestris. Agric and Environ7(1): 73–81.10.1016/0304-1131(87)90008-7Search in Google Scholar

Canesi L, Procházková P. (2014). The invertebrate immune system as a model for investigating the environmental impact of nanoparticles. In: Boraschi D, Duschl A (eds), Nanoparticles and the immune system, safety and effects, Academic Press, Oxford, pp. 91–112.10.1016/B978-0-12-408085-0.00007-8Search in Google Scholar

CCOHS (2018). Canandian center for occupational health and safety. https://www.ccohs.ca/oshanswers/chemicals/ld50.html.Search in Google Scholar

Cortet J, Gillon D, Joffre R, Ourcival J.M, Poinsot-Balaguer N. (2002). Effects of pesticides on organic matter recycling and microarthropods in a maize-field: use and discussion of the litter-bag methodology. Eur J Soil Biol38: 261–265.10.1016/S1164-5563(02)01156-1Search in Google Scholar

Daam MA, Leitão S, Cerejeira MJ, Paulo Sousa J. (2011). Comparing the sensitivity of soil invertebrates to pesticides with that of Eisenia fetida. Chemo-sphere85: 1040–1047.10.1016/j.chemosphere.2011.07.032Search in Google Scholar

Datta S, Singh J, Singh S, Singh J. (2016). Earthworms, pesticides and sustainable agriculture: a review. Environ Sci Pollut Res 23(9): 8227–43.10.1007/s11356-016-6375-0Search in Google Scholar

De Arnab, Bose R, Kumar A, Mojumdar S. (2014). Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles, Springer Briefs in Molecular Science, DOI: 10.1007/978-81-322-1689-6_2.10.1007/978-81-322-1689-6_2Search in Google Scholar

Devkota D, Dhakal SC, Dhakal D, Dhakal DD, Ojha RB. (2014). Economics of Production and Marketing of Vermicompost in Chitwan, Nepal. Int J of Agri and Soil Sci2(7): 112–117.Search in Google Scholar

De Silva PMCS, VanGestel CAM. (2009). Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere77: 1609–1613.10.1016/j.chemosphere.2009.09.034Search in Google Scholar

De silva PMCS. (2009). Pesticide effects on earthworms: A tropical perspective, Ph.D. Thesis. Department of Ecological Science, VU University, Amsterdam, The Netherlands. pp.117.Search in Google Scholar

DGCI&S. (2017): Directorate General of Commercial Intelligence and Statistics, Kolkata, WB, Ministry of Commerce. http://ppqs.gov.in/divisions/pesticides-monitoring-documentation.Search in Google Scholar

Dureja P, Tanwar RS. (2012). “Pesticides: Evaluation of Environmental Pollution,” ed. by H. S. Rathore and L. M. L. Nollet, Chapt. 12, CRC Press, Boca Raton, Florida, U.S.A., pp. 337–359.10.1201/b11864-28Search in Google Scholar

Dutta A, Dutta H. (2016). Some Insights into the effect of Pesticides on Earthworms. Int Res J Environ Sci5(4): 61–66.Search in Google Scholar

Edwards CA, Bohlen PJ. (1992). The effect of toxic chemicals on earthworms. Rev. Environ. Contam. Toxicol125: 23–99.10.1007/978-1-4612-2890-5_2Search in Google Scholar

Edwards CA, Bohlen PJ. (1996). Biology and Ecology of Earthworms 3rd edition. London : Chapman and Hall.Search in Google Scholar

EPA (2009). Registering Pesticides. Available online: http://www.epa.gov/pesticides/regulating/re-gistering/index.htm (accessed on 1 April 2011).Search in Google Scholar

Espinoza-Navaroo O, Bustos-Obregon E. (2004). Sublethal doses of malathion after male reproductive parameters of Eisenia fetida. Ecotoxicol & Environ Safety50(3): 180–188.Search in Google Scholar

Espinoza-Navaroo O, Bustos-Obregon E. (2004). Effect of malathion on the male reproductive organ of earthworms, Eisenia fetida. Asian J Androl7: 97–101.10.1111/j.1745-7262.2005.00005.xSearch in Google Scholar

Farrukh S, Ali AS. (2011). Effects of dichlorovos organophosphate on growth, reproduction, and avoidance behavior of earthworm Eisenia foetida. Iran J Toxicol5: 495–501.Search in Google Scholar

FICCI. Federation of Indian chambers of commerce and Industry (2014.) Safe and Judicious Use of agrochemicals and applications of green chemistry. pp.1–32.Search in Google Scholar

FICCI – Federation of Indian chambers of commerce and Industry. (2015). A Report on Indian Agrochemical Industry. pp. 64.Search in Google Scholar

Fingerman M. (1984). Pollution our enemy. Proc. Symp. Physiol. Resp. Anim. Poll. pp.1–6.Search in Google Scholar

Frampton GK, Jansch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ. (2006). Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem25: 2480–2489.10.1897/05-438R.1Search in Google Scholar

Gambi N, Pasteris A, Fabbri E. (2007). Acetyl choline esterase activity in the earthworm Eisenia andrei at different conditions of carbaryl exposure. Comp Biochem Physiol C:Toxicol Pharmacol145: 678–685.10.1016/j.cbpc.2007.03.002Search in Google Scholar

Garcia M, Rombke J, De Brito M.T, Scheffczyk A. (2008). Effects of three pesticides on the avoidance behavior of earthworms in laboratory tests performed under temperate and tropical conditions. Environ Pollut153: 450–456.10.1016/j.envpol.2007.08.007Search in Google Scholar

Garcia M, Scheffczyk A, Garcia T, Rombke J. (2011). The effects of the insecticide lambda-Cyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions. Environ Pollut159: 398–400.10.1016/j.envpol.2010.10.038Search in Google Scholar

Gevao B, Jones KC, Semple KT, Craven A, Burauel P. (2003). Non extractable pesticide residues in soil. Environ Sci Technol1: 139–144.10.1021/es032402nSearch in Google Scholar

Gill H.K and Garg H. (2014). Pesticides: Environmental Impacts and Management Strategies. Pesticides – Toxic Aspects, Marcelo L. Larramendy and Sonia Soloneski, IntechOpen, DOI: 10.5772/57399.10.5772/57399Search in Google Scholar

Govindarajan B, Prabaharan V. (2014). The effect of pesticides on reproduction the potential of the earthworms: a review. Eu J of Mol Biol and Biochem1(2): 70–72.Search in Google Scholar

Gupta RD, Chakravorty PP, Kaviraj A. (2010). Studies on relative toxicities of six insecticides on epigeic earthworm, Perionyx excavatus. Bull Environ Contam Toxicol85: 83–86.10.1007/s00128-010-0038-5Search in Google Scholar

Gupta SK, Saxena PN. (2003). Carbaryl-induced behavioral and reproductive abnormalities in the earthworm Metaphire posthuma: a sensitive model,” Alternatives to Laboratory Animals31(6): 587–593.10.1177/02611929030310060715560748Search in Google Scholar

Guruge KS, Tanabe S. (2001). Contamination by persistent organochlorines and butyltin compounds in the west coast of Sri Lanka. Mar Pollut Bull42: 179–186.10.1016/S0025-326X(00)00140-5Search in Google Scholar

Hassan SA. (1989). Testing methodology and the concept of the IOBC/WPRS working group. p. 1–18. In:“Pesticides and Non-target Invertebrates” (P.C. Jepson, ed.). Intercept, Wimborne, Dorset, UK, pp.240.Search in Google Scholar

Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD. (2005). Does organic farming benefit biodiversity? Biol Conservat122: 113–130.10.1016/j.biocon.2004.07.018Search in Google Scholar

Huang PM, Iskandar IK (1999) Soils and Groundwater Pollution and Remediation: Asia, Africa, and Oceania. CRC Press. ISBN 9781566704526.Search in Google Scholar

Hussain S, Siddique T, Saleem M, Arshad M, Khalid A. (2009). Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in Agronomy102: 159–200.10.1016/S0065-2113(09)01005-0Search in Google Scholar

IRAC – Insecticides Resistance Action Committee (2016). Insecticide Mode of Action Classification Scheme. Version 8.1. www.irac-online.org. pp 1–26.Search in Google Scholar

ISO. International Standards Organization (1993). Soil-quality-effects of Pollutants on Earthworms (Eisenia fetida). Part 1 Determination of Acute Toxicity using Artificial Soil Substrate. International Standardization Organization, Geneva, Switzerland, ISO11268–1.Search in Google Scholar

Jänsch S, Garcia M, Römbke J. (2005). Acute and chronic isopod testing using tropical Porcellionides pruinosus and three model pesticides. Eur J Soil Biol41: 143–152.10.1016/j.ejsobi.2005.09.010Search in Google Scholar

Jager T, van der Wal L, Fleuren RH, Barendregt A, Hermens JL. (2005). Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms. Environ. Sci. Technol39: 293–298.10.1021/es035317oSearch in Google Scholar

Jeyanthi V, Paul JAJ, Selvi BK, Karmegam N. (2016). Comparative Study of Biochemical Responses in Three Species of Earthworms Exposed to Pesticide and Metal Contaminated Soil. Environ Process3: 167–178.10.1007/s40710-016-0131-9Search in Google Scholar

Johnson M, Franke L, Lee R, Holladay S. (1999). Bioaccumulation of 2,4,6-trinitrotoluene and polychlorinated biphenyls through two routes of exposure in a terrestrial amphibian: is the dermal route significant? Environ Toxicol and Chem18(5): 873–876.10.1002/etc.5620180509Search in Google Scholar

Julka, JM. (2001). Earthworm diversity and its role in agroecosystem. VII National symposium on soil biology and ecology. Bangalore University of Agricultural Sciences, Bangalore, pp.13–17.Search in Google Scholar

Karthikeyan S, Ramesh PT, Nagamani B, Kumar GM. (2004). Earthworms. Agro, India. 7: 34–35.Search in Google Scholar

Kathireswari P. (2016). DNA Barcoding of Earthworms. In Science Communicators meet (103rd ISCA), Mysore.Search in Google Scholar

Kaushal BR, Bisht SPS, Kalia S. (1995). Population dynamics of the earthworm Amynthas alexandri (Megascolecidae: Annelida) in cultivated soils of the Kumaun Himalayas. Appl Soil Ecol2(2): 125–30.10.1016/0929-1393(94)00040-ESearch in Google Scholar

Lavelle P. (1983). “The structure of earthworm communities,” in Earthworm Ecology, J. E. Satchell, Ed., Chapman and Hall, London, UK. pp. 449–466.10.1007/978-94-009-5965-1_39Search in Google Scholar

Lee KE. (1985). Earthworms. Their Ecology and Relations to Soils and Land Use, First. Academic Press, Sydney. pp. 411.Search in Google Scholar

Lim SL, Wu TY, Lim PN, Shak KPY (2015b). The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric95(6):1143–1156.10.1002/jsfa.684925130895Search in Google Scholar

Liang W, Beattie GCA, Meats A, Spooner-Hart R. (2007). Impact on soil-dwelling arthropods in citrus orchards of spraying horticultural mineral oil, carbaryl or methidathion. Aust J Entomol46: 79–85.10.1111/j.1440-6055.2007.00583.xSearch in Google Scholar

Lima M.P, Cardoso D.N, Soares A.M, Loureiro S. (2015). Carbaryl toxicity prediction to soil organisms under high and low-temperature regimes. Ecotoxicol Environ Saf114: 263–272.10.1016/j.ecoenv.2014.04.004Search in Google Scholar

Lo CC. (2010). Effect of pesticides on soil microbial community. J. Environ. Sci. Health,B: Pesticides45: 348–359.10.1080/03601231003799804Search in Google Scholar

Maurya P, Malik D. (2016). Accumulation and distribution of organochlorine and organophosphorus pesticide residues in water, sediments and fishes, Heteropneustis fossilis and Puntius ticto from Kali River, India. J of Toxico and Environ Health Sci8(5): 30–40.10.5897/JTEHS2016.0367Search in Google Scholar

Mangala P, De Silva CS, Pathiratne A, Van Gestel CAM. (2009). Influence of Temperature and Soil Type on the Toxicity of Three Pesticides to Eisenia Andrei. Chemosphere.76: 1410–1415.10.1016/j.chemosphere.2009.06.006Search in Google Scholar

Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. (2016). Effect of Pesticides on environment. Springer International Publishing, Switzerland. DOI: 10.1007/978-3-319-27455-3_13.10.1007/978-3-319-27455-3_13Search in Google Scholar

Mathur SC. (1999). Future of Indian pesticides industry in next millennium. Pesticide Information24(4): 9–23.Search in Google Scholar

Mayanglambam T, Vig K, Singh DK. (2005). Quinalphos persistence and leaching under field conditions and effects of residues on dehydrogenase and alkaline phosphomonoesterases activities in soil. Bull of Environ Contam and Toxicol75: 1067–1076.10.1007/s00128-005-0858-xSearch in Google Scholar

Milanović J, Milutinović T, Stojanović M. (2014). Effects of three pesticides on the earthworm Eisenia Fetida (Savigny 1826) under laboratory conditions: assessment of mortality, biomass, and growth inhibition. Eur J Soil Biol62: 127–131..10.1016/j.ejsobi.2014.03.003Search in Google Scholar

Mosleh YY, Ismail SMM, Ahmed MT, Ahmed YM. (2003). Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodea Caliginosa under laboratory conditions. Environ Toxicol. 8: 338–346.10.1002/tox.10134Search in Google Scholar

Munoz-Leoz B, Ruiz-Romera E, Antiguedad I, Garbisu C. (2011). Tebuconazole application decreases soil microbial biomass and activity. Soil Biol and Biochem. 43: 2176–2183.10.1016/j.soilbio.2011.07.001Search in Google Scholar

Nasr HM, Badawy EI. (2015). Biomarker Response and Biomass Toxicity of Earthworms Aporrectodea caliginosa Exposed to IGRs Pesticides. J Environ Anal Toxicol5: 1–7.10.4172/2161-0525.1000332Search in Google Scholar

Nasreen A, Ashfaq M, Mustafa G. (2000). Intrinsic Toxicity of some insecticides to egg parasitoid Tricogramma chilonis (Hym Trichogrammatidae). Bull Inst Trop Agri Kyushu Univ23: 41–44.Search in Google Scholar

Nahmani J, Hodson ME, Black S. (2007). A review of studies performed to assess metal uptake by earthworms. Environ. Pollut145: 402–424.10.1016/j.envpol.2006.04.009Search in Google Scholar

OECD. (1984). Guideline for Testing of Chemicals, No. 207, Earthworm Acute Toxicity, Paris, France.10.1787/9789264070042-enSearch in Google Scholar

OECD. (2004). Guideline for Testing of Chemicals, No. 222, Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei), Paris, France.Search in Google Scholar

OECD. (2015). Guidelines of testing of chemical No. 222 Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei). Drafted 12.06.2015, Paris France.Search in Google Scholar

Pal A, Patidar P. (2013). Effect of insecticide dimethoate on the reproduction of Eisenia foetida (earthworm). Adv pharmacol toxicol14(3): 57–64.Search in Google Scholar

Panda S, Sahu SK. (1999). Effects of malathion on the growth and reproduction of Drawida Willsi (Oligochaeta) under laboratory conditions. Soil Biol Biochem31: 363–366.10.1016/S0038-0717(98)00135-7Search in Google Scholar

Panda S, Sahu S. (2004). Acute toxicity assessment of three pesticides to the earthworm Drawida willsi. J of Ecotoxicol and Environ Monitor12(3): 215–223.Search in Google Scholar

PanGermany. (2012). Pesticide and health hazards. Facts and figures 116 (www.pangermany.org/download/Vergift_EN-201112-web.pdf).Search in Google Scholar

Patangray AJ. (2014). Vermicompost: beneficial tool for sustainable farming. Asian J Multidisciplinary Stud2(8): 254–257.Search in Google Scholar

PAN Pesticide action network. (2010). Pesticide database. (last accessed on 26 February 2010). Available online: http://www.pesticideinfo.org 5.Search in Google Scholar

Paoletti MG. (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ74: 137–155.10.1016/B978-0-444-50019-9.50011-XSearch in Google Scholar

Patnaik HK, Dash MC. (1990). Toxicity of monocrotophos and fenitrothion to four common Indian earthworm species. Poll Residue9: 95–99.Search in Google Scholar

Pawar S, Ahmad S. (2013). Impact of Organophosphate (Chloropyriphose) on Weight and Growth of Earthworm, Eisenia foetida. Int J of Sci and Resear. ISSN (Online): 2319–7064.Search in Google Scholar

Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F. (2014). Pesticides and earthworms. A review. Agron. Sustain. Dev34: 199–228.10.1007/s13593-013-0151-zSearch in Google Scholar

Piccolo A, Conte P, Scheunert I, Paci M. (1998). Atrazine interactions with soil humic substances of different molecular structure. J. Environ. Qual27: 1224–1333.10.2134/jeq1998.00472425002700060009xSearch in Google Scholar

Pimental D. (1995). Amounts of pesticides reaching target pests, Environmental impacts and ethics. J Agril Environ Ethics8: 17–29.10.1007/BF02286399Search in Google Scholar

Rajashree, Mhamane P, Reddy P. (2014). Effect of Organophosphate Pesticide “Methyl Parathion” and “Phorate” on Earthworm Central Nervous System. In J of Rec Tre in Sci and Tech10: 483–485.Search in Google Scholar

Rao JV, Pavan YS, Madhavendra SS. (2003). Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm Eisenia Foetida Ecotoxicol Environ Saf54: 296–301.10.1016/S0147-6513(02)00013-1Search in Google Scholar

Reddy NC, Rao JV. (2008). Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicol Environ Saf71: 574–582.10.1016/j.ecoenv.2008.01.003Search in Google Scholar

Reynolds J W, Wetzel MJ. (2004). Nomenclatura Oligochaetologica. Supple-mentum Quartum. A catalogue of names, descriptions and type specimens of the Oligochaeta. Illinois Natural History Survey Special Publication.Search in Google Scholar

Ribera D, Narbonne JF, Arnaud C, Saint-Denis M. (2001). Biochemical responses of the earthworm, Eisenia fetida, andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Boil Biochem33: 1123–1130.10.1016/S0038-0717(01)00035-9Search in Google Scholar

Rico A, Sabater C, Castillo MA. (2016). Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicol and Environ Saf127: 222–229.10.1016/j.ecoenv.2016.02.004Search in Google Scholar

Ritz K, McNicol JW, Nunan N, Grayston S, Millard P, Atkinson D, Gollotte A, Habeshaw D, Boag B, Clegg CD, Griffiths BS, Wheatley RE, Glover LA, Mc-Caig AE, Prosser JI. (2004). Spatial Environ Sci Pollut Resstructure in soil chemical and microbiological properties in upland grassland. FEMS Micro-biol Ecol49(2): 191–205.10.1016/j.femsec.2004.03.005Search in Google Scholar

Roberts B, Dorough W. (1984). Relative toxicities of chemicals to the earthworm Eisenia foetida. Environ Toxicol and Chem3: 67–78.10.1002/etc.5620030109Search in Google Scholar

Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM. (2014). Potential of earthworms to accelerate removal of organic contaminants from soil: A review. App Soil Ecol79: 10–25.10.1016/j.apsoil.2014.02.010Search in Google Scholar

Romero E, Fernández-Bayo J, Díaz JMC, Nogale R. (2010). Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc andtreated with urea. Appl Soil Ecol44: 198–204.10.1016/j.apsoil.2009.12.006Search in Google Scholar

Rosell G, Quero C, Coll J, Guerrero A. (2008). Biorational insecticides in pest management. J of Pesticide Sci33: 103–121.10.1584/jpestics.R08-01Search in Google Scholar

Sampedro L, Jeannotte R, Whalen JK. (2006). Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus Terrestris L July. Soil Biol and Biochem38(8): 2188–2198.10.1016/j.soilbio.2006.02.001Search in Google Scholar

Sánchez-Bayo F, Van den Brink PJ, Mann RM. (2011). Ecological Impacts of Toxic Chemicals. Bentham Science Publishers Ltd. Online, pp.281.10.2174/97816080512121110101Search in Google Scholar

Sánchez-Bayo F. (2012) Insecticides Mode of Action in relation to their toxicity to Non-Target Organisms. J Environ Analytic ToxicolS4: 002.10.4172/2161-0525.S4-002Search in Google Scholar

Saravi SSS, Shokrzadeh M. (2011). Role of pesticides in human life in the modern age: a review. In: Stoytcheva M (ed.) Pesticides in the modern world-risks and benefits. In Tech pp. 4–11.Search in Google Scholar

Saxena PN, Gupta SK, Murthy RC. (2014). Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida-a possible mechanism. Ecotoxicol Environ Saf100: 218–225.10.1016/j.ecoenv.2013.11.006Search in Google Scholar

Sabra F.S, Mehana E.S. (2015) Pesticides Toxicity in Fish with Particular Reference to Insecticides. Asian J Agric Food Sci. Vol. 3.pp.40–60.Search in Google Scholar

Schaefer M. (2004). Assessing 2, 4, 6-trinitrotoluene (TNT)-contaminated soil using three different earthworm test methods. Ecotoxicol Environ Saf57: 74–80.10.1016/j.ecoenv.2003.08.005Search in Google Scholar

Schreck E, Geret F, Gontier L, Treihou M. (2008). Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa noctuma. Chemosphere71: 1832–1839.10.1016/j.chemosphere.2008.02.003Search in Google Scholar

Senapati BK, Biswal J, Sahu SK, Pani SC. (1991). Impact of malathion on Drawidi willsi, a dominant earthworm in Indian rice fields. Pedobiologia. 35: 117–128.Search in Google Scholar

Sorou J, Larink O. (2001). Toxic effects of benomyl on the ultrastructure during spermatogenesis of the earthworm Eisenia foetida. Ecotoxicol. Environ. Saf50: 180–8.10.1006/eesa.2001.2067Search in Google Scholar

Shi Y, Shi Y, Wang X, Lu Y, Yan S. (2007) Comparative effects of lindane and deltamethrin on mortality, growth, and cellulase activity in earthworms (Eisenia fetida). Pesticide Biochem and Physiol89(1): 31–38.10.1016/j.pestbp.2007.02.005Search in Google Scholar

Silva CL, Brennan N, Brouwer JM, Commandeur D, Verweij RA. (2017). Comparative toxicity of imidacloprid and thiacloprid to different species of soil invertebrates. Ecotoxicology26: 555–564.10.1007/s10646-017-1790-7Search in Google Scholar

Solaimalai A, Ramesh RT, Baskar M. (2004). Pesticides and environment. In: Environ contam and bioreclam pp. 345–382.Search in Google Scholar

Stanley J, Chandrasekaran S, Preetha S, Kuttalam S, Jasmine RS. (2016). Selective toxicity of diafenthiuron to non-target organisms: honey bees, coccinellids, chelonus, earthworms, silkworms and fish. J Plant Protec Research56(1): 1–5.10.1007/978-94-017-7752-0Search in Google Scholar

Stephenson G, Wren C, Middleraad I C J,Warner J. (1997). Exposure of the earthworm, Lumbricus terrestris, to diazinon, and the relative risk to passerine birds. Soil Biol and Biochem29(3/4): 717–720.10.1016/S0038-0717(96)00199-XSearch in Google Scholar

Surana T, Sharma J, Bhatt S. (2012). Sunidhi Research,Agrochemical research (A Technical Report). pp 1–106.Search in Google Scholar

Suzhen Qi, Donghui W, Lizhen Z, Miaomiao T, Chengju W, Xiaofeng X, Liming Wu. (2018). Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm, Eisenia fetida. Environ Sci and Poll Research25: 14138–14147.10.1007/s11356-018-1624-zSearch in Google Scholar

Thapar A, Zalawadia A, Pokharkar OV, Satam SS. (2015). Classification of pesticides and its damaging effects: a review. Biolife4(1): 13–24.Search in Google Scholar

Van Gestel C, Weeks J. (2004). Recommendations of the 3rd International Workshop on earthworm ecotoxicology, Aarhus, Denmark, August 2001. Ecotoxicol and Environ Saf57: 100–105.10.1016/j.ecoenv.2003.08.011Search in Google Scholar

Venter JM, Reinecke AJ. (1985). Dieldrin and growth and development of the Earthworm, Eisenia fetida (oligochaeta), Bull of Environ Contam and Toxicol35: 652–659.10.1007/BF016365694074930Search in Google Scholar

Vickerman GP. (1988) Farm scale evaluation of the long-term effects of different pesticide regimes on the arthropod fauna of winter wheat. In: Greeves MP, Grieg-Smith PW, Smith BD (eds.) Field methods for the environmental study of the effects of pesticides. BCPC Monograph No. 40 British Crop Protection Council, Farnham, UK; pp.127–135.Search in Google Scholar

Wang Y, Cang T, Zhao X,Yu R, Chen L, Wu C and Wang Q. (2012). Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79: 122–128.10.1016/j.ecoenv.2011.12.016Search in Google Scholar

Wang Y, Wu S, Chen L, Wu C, Yu R, Wang Q and Zhao X. (2012a). Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemo-sphere88: 484–491.10.1016/j.chemosphere.2012.02.08622459421Search in Google Scholar

Ware GW. (1980). Effects of pesticides on nontarget organisms. Residue Reviews 76: 173–201.10.1007/978-1-4612-6107-0_9Search in Google Scholar

Ware GW and Whitacre DM. (2004). The Pesticide Book, 6th Ed. Meister Media Worldwide, Willoughby, Ohio. pp. 496.Search in Google Scholar

Wolter C and Scheu S. (1999). Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia43: 891–900.Search in Google Scholar

Yasmin S and D’Souza D. (2010). Effects of Pesticides on the Growth and Reproduction of Earthworm: A Review. Appl and Environ Soil Sci2010: Article ID 678360, 1–9.10.1155/2010/678360Search in Google Scholar

Yuguda AU, Abubakar ZA, Jibo AU, AbdulHameed A and Nayaya AJ. (2015). Assesment of Toxicity of Some Agricultural Pesticides on Earthworm (Lumbricus Terrestris). Am Eurasian J Sustain Agric9: 49–59.Search in Google Scholar

Zhang C, Liu X, Dong F, Xu J, Zheng Y, Li J. (2010). Soil microbial communities response to herbicide 2,4-dichlorophenoxyacetic acid butyl ester. Eur J Soil Biol46: 175–180.10.1016/j.ejsobi.2009.12.005Search in Google Scholar

Zhou S, Duan CP, Wang XH, Michelle WHG, Yu ZF, and Fu F. (2008). Assessing cypermethrin-contaminated soil with three different earthworm test methods. J Environ Sci20: 1381–1385.10.1016/S1001-0742(08)62236-6Search in Google Scholar

Zhou Sp, Duan Cq, Fu Hui, Chen Yh, Wang Xh and Yu Zf. (2007). Toxicity assessment for chlorpyrifos-contaminated soil with three different earthworm test methods. J Environ Sci19: 854–858.10.1016/S1001-0742(07)60142-9Search in Google Scholar

Zhou X, Zhang QR and Liang JD. (2006) Toxic effects of acetochlor and methamidophos on earthworm Eisenia Fetida in Phaiozem, northeast China. J Environ Sci18: 741–745.Search in Google Scholar

eISSN:
1337-9569
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Pharmacology, Toxicology