[Abut, F., & Akay, M. F. (2015). Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances. Med Devices (Auckl), 8, 369-379. doi:10.2147/mder.S5728110.2147/MDER.S57281]Search in Google Scholar
[Adelman, L. (1992). Evaluating decision support and expert systems. New York, NY, USA: Wiley-Interscience.]Search in Google Scholar
[Baeza-Yates, R. (2016). Data and algorithmic bias in the web. Proceedings of the 8th ACM Conference on Web Science. Retrieved from https://cacm.acm.org/magazines/2018/6/228035-bias-on-the-web/fulltext10.1145/2908131.2908135]Search in Google Scholar
[Bartlett, J. D., O’Connor, F., Pitchford, N., Torres-Ronda, L., & Robertson, S. J. (2017). Relationships between internal and external training load in team-sport athletes: evidence for an individualized approach. Int J Sports Physiol Perform, 12(2), 230-234. doi:10.1123/ijspp.2015-079110.1123/ijspp.2015-0791]Search in Google Scholar
[Bate, L., Hutchinson, A., Underhill, J., & Maskrey, N. (2012). How clinical decisions are made. Br J Clin Pharmacol, 74(4), 614-620. doi:10.1111/j.1365-2125.2012.04366.x10.1111/j.1365-2125.2012.04366.x]Search in Google Scholar
[Bennet, A., & Bennet, D. (2004). Organizational survival in the new world: the itelligent complex adaptive system. Boston: Elsevier.10.4324/9780080513331]Search in Google Scholar
[Bennet, A., & Bennet, D. (2008). The decision-making process in a complex situation. Berlin: Springer-Verlag Berlin Heidelberg.]Search in Google Scholar
[Bertani, A., Cappello, A., Benedetti, M. G., Simoncini, L., & Catani, F. (1999). Flat foot functional evaluation using pattern recognition of ground reaction data. Clin Biomech (Bristol, Avon), 14(7), 484-493.10.1016/S0268-0033(98)90099-7]Search in Google Scholar
[Blythe, D. A., & Kiraly, F. J. (2016). Prediction and quantification of individual athletic performance of runners. PLoS ONE, 11(6), e0157257. doi:10.1371/journal.pone.015725710.1371/journal.pone.0157257491909427336162]Search in Google Scholar
[Bourne, M., Neely, A., Mills, J., & Platts, K. (2003). Implementing performance measurement systems: a literature review. International Journal of Business Performance Management, 5(1), 1-24.10.1504/IJBPM.2003.002097]Search in Google Scholar
[Calder, J. M., & Durbach, I. N. (2015). Decision support for evaluating player performance in rugby union. Int J Sports Sci Coach, 10(1), 21-37. doi:https://doi.org/10.1260/1747-9541.10.1.2110.1260/1747-9541.10.1.21]Search in Google Scholar
[Carey, D. L., Ong, K., Whiteley, R., Crossley, K. M., Crow, J., & Morris, M. E. (2018). Predictive modelling of training loads and injury in australian football. International Journal of Computer Science in Sport, 17(1), 49-66. doi:10.2478/ijcss-2018-000210.2478/ijcss-2018-0002]Search in Google Scholar
[Chaudhry, S. S., Salchenberger, L., & Beheshtian, M. (1996). A small business inventory DSS: design development, and implementation issues. Computers & Operations Research, 23(1), 63-72. doi:https://doi.org/10.1016/0305-0548(95)00004-610.1016/0305-0548(95)00004-6]Search in Google Scholar
[Chengular-Smith, I. N., Ballou, D., & Pazer, H. L. (1999). The impact of data quality information on decision making: an exploratory analysis. IEEE Trans. Knowl Data Eng, 11(6).10.1109/69.824597]Search in Google Scholar
[Chenoweth, T., L. Dowling, K. L., & St Louis, R. (2004). Convincing DSS users that complex models are worth the effort. Decision Support Systems, 37(1), 71-82. doi:10.1016/S0167-9236(03)00005-810.1016/S0167-9236(03)00005-8]Search in Google Scholar
[Clermont, C. A., Osis, S. T., Phinyomark, A., & Ferber, R. (2017). Kinematic gait patterns in competitive and recreational runners. J Appl Biomech, 33(4), 268-276. doi:10.1123/jab.2016-021810.1123/jab.2016-021828253053]Search in Google Scholar
[Croskerry, P. (2005). The theory and practice of clinical decision-making. Canadian Journal of Anesthesia, 52(S1), R1–R8.10.1007/BF03023077]Search in Google Scholar
[Croskerry, P. (2009). Context is everything or how could I have been that stupid? Healthc Q, 12 Spec No Patient, e171-176.10.12927/hcq.2009.2094519667765]Search in Google Scholar
[Donabedian, A. (1980). Definition of quality and approaches to its assessment. Ann Arbor, MI: Health Administration Press.]Search in Google Scholar
[Donabedian, A. (1988). The quality of care. How can it be assessed? JAMA, 260(12), 1743-1748. doi:10.1001/jama.260.12.174310.1001/jama.260.12.17433045356]Search in Google Scholar
[Dutt-Mazumder, A., Button, C., Robins, A., & Bartlett, R. (2011). Neural network modelling and dynamical system theory: are they relevant to study the governing dynamics of association football players? Sports Med, 41(12), 1003-1017. doi:10.2165/11593950-000000000-0000010.2165/11593950-000000000-0000022060175]Search in Google Scholar
[Elragal, A., & Klischewski, R. (2017). Theory-driven or process-driven prediction? Epistemological challenges of big data analytics. J Big Data, 4(19). doi:10.1186/s40537-017-0079-210.1186/s40537-017-0079-2]Search in Google Scholar
[Ertelt, T., Solomonovs, I., & Gronwald, T. (2018). Enhancement of force patterns classification based on Gaussian distributions. J Biomech, 67, 144-149. doi:10.1016/j.jbiomech.2017.12.00610.1016/j.jbiomech.2017.12.00629276071]Search in Google Scholar
[Everitt, B. S., & Skrondal, A. (Eds.). (2010) Cambridge Dictionary of Statistics. Cambridge University Press.10.1017/CBO9780511779633]Search in Google Scholar
[Fisher, C. W., Chengalur-Smith, I., & Ballou, D. P. (2003). The impact of experience and time on the use of data quality information in decision making. Inform Syst Res, 14(2), ^ í ˙˙10.1287/isre.14.2.170.16017]Search in Google Scholar
[Fortmann-Roe, S. (2012a). Accurately measuring model prediction error. Retrieved from http://scott.fortmann-roe.com/docs/MeasuringError.html]Search in Google Scholar
[Fortmann-Roe, S. (2012b). Understanding the bias-variance tradeoff. Retrieved from http://scott.fortmann-roe.com/docs/BiasVariance.html]Search in Google Scholar
[Gönül, M. S., Önkal, D., & Lawrence, M. (2006). The effects of structural characteristics of explanations on use of a DSS. Decision Support Systems, 42(3), 1481–1493.10.1016/j.dss.2005.12.003]Search in Google Scholar
[Gregor, S., & Benbasat, I. (1999). Explanations from intelligent systems: theoretical foundations and implications for practice. MIS Quarterly, 23(4), 497–530.10.2307/249487]Search in Google Scholar
[Grehaigne, J., Godbout, P., & Bouthier, D. (1997). Performance assessment in team sports. Journal of Teaching in Physical Education, 16, 500-516.10.1123/jtpe.16.4.500]Search in Google Scholar
[Hoch, S. J., & Schkade, D. A. (1996). A psychological approach to decision support systems. Management Science, 42(1), 51-64. Retrieved from http://www.jstor.org/stable/263301510.1287/mnsc.42.1.51]Search in Google Scholar
[Hogarth, L., Payton, C., Van de Vliet, P., Connick, M., & Burkett, B. (2018). A novel method to guide classification of para swimmers with limb deficiency. Scand J Med Sci Sports, 28(11), 2397-2406. doi:10.1111/sms.1322910.1111/sms.13229]Search in Google Scholar
[Hogue, J. T., & Hugh, J. W. (1984). Current practices in the development of decision support systems. Information and Management, 205-212. Retrieved from http://aisel.aisnet.org/icis1984/1610.1016/0378-7206(85)90017-5]Search in Google Scholar
[Holsapple, C. W. (2008). Decisions and knowledge. Berlin: Springer-Verlag Berlin Heidelberg.]Search in Google Scholar
[Hooshyar, D., Yousefi, M., & Lim, H. (2017). A systematic review of data-driven approaches in player modeling of educational games. Artificial Intelligence Review, 4(19), 1-20. doi:doi:10.1007/s10462-017-9609-810.1007/s10462-017-9609-8]Search in Google Scholar
[Hunt, D. L., Haynes, R. B., Hanna, S. E., & Smith, K. (1998). Effects of computer-based clinical decision support systems on physician performance and patient outcomes: a systematic review. JAMA, 280(15), 1339-1346.10.1001/jama.280.15.13399794315]Search in Google Scholar
[IBM. (2012). IBM SPSS Modeler CRISP-DM Guide. Retrieved from https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.crispdm.help/crisp_overview.htm]Search in Google Scholar
[Janssen, D., Schollhorn, W. I., Newell, K. M., Jager, J. M., Rost, F., & Vehof, K. (2011). Diagnosing fatigue in gait patterns by support vector machines and self-organizing maps. Hum Mov Sci, 30(5), 966-975. doi:10.1016/j.humov.2010.08.01010.1016/j.humov.2010.08.01021195495]Search in Google Scholar
[Jaspers, A., De Beeck, T. O., Brink, M. S., Frencken, W. G. P., Staes, F., Davis, J. J., & Helsen, W. F. (2018). Relationships between the external and internal training load in professional soccer: what can we learn from machine learning? Int J Sports Physiol Perform, 13(5), 625-630. doi:10.1123/ijspp.2017-029910.1123/ijspp.2017-029929283691]Search in Google Scholar
[Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: a failure to disagree. Am Psychol, 64(6), 515-526. doi:10.1037/a001675510.1037/a001675519739881]Search in Google Scholar
[Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47(2), 263-292.10.2307/1914185]Search in Google Scholar
[Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ, 330(7494), 765. doi:10.1136/bmj.38398.500764.8F10.1136/bmj.38398.500764.8F55588115767266]Search in Google Scholar
[Kayande, U., De Bruyn, A., Lilien, G. L., Rangaswamy, A., & van Bruggen, G. H. (2009). How incorporating feedback mechanisms in a DSS affects DSS evaluations. Information Systems Research, 20(4), 527-546.10.1287/isre.1080.0198]Search in Google Scholar
[Kenett, R., & Shmueli, G. (2016). Dimensions of information quality and InfoQ assessment. In R. Kenett & G. Shmueli (Eds.), The Potential of Data and Analytics to Generate Knowledge. Chichester, West Sussex: WILEY.10.1002/9781118890622]Search in Google Scholar
[Kenrose, S. (2015). Parsimonious model: definition, ways to compare models. Statistics How To. Retrieved from https://www.statisticshowto.datasciencecentral.com/parsimonious-model/]Search in Google Scholar
[Khazanchi, D. (1991). Evaluating decision support systems: a dialectical perspective. Paper presented at the 24th Annual Hawaii International Conference on Systems Sciences (HICSS-24), Hawaii.10.1109/HICSS.1991.184131]Search in Google Scholar
[Kianifar, R., Lee, A., Raina, S., & Kulic, D. (2016). Classification of squat quality with inertial measurement units in the single leg squat mobility test. Conf Proc IEEE Eng Med Biol Soc, 2016, 6273-6276. doi:10.1109/embc.2016.759216210.1109/EMBC.2016.759216228269683]Search in Google Scholar
[Kipp, K., Giordanelli, M., & Geiser, C. (2018). Predicting net joint moments during a weightlifting exercise with a neural network model. J Biomech, 74, 225-229. doi:10.1016/j.jbiomech.2018.04.02110.1016/j.jbiomech.2018.04.02129706383]Search in Google Scholar
[Kovalchik, S., & Reid, M. (2018). A shot taxonomy in the era of tracking data in professional tennis. J Sports Sci, 36(18), 2096-2104. doi:10.1080/02640414.2018.143809410.1080/02640414.2018.143809429419342]Search in Google Scholar
[Lai, F., Macmillan, J., Daudelin, D. H., & Kent, D. M. (2006). The potential of training to increase acceptance and use of computerized decision support systems for medical diagnosis. Hum Factors, 48(1), 95-108. doi:10.1518/00187200677641230610.1518/00187200677641230616696260]Search in Google Scholar
[Lai, M., Meo, R., Schifanella, R., & Sulis, E. (2018). The role of the network of matches on predicting success in table tennis. J Sports Sci, 1-8. doi:10.1080/02640414.2018.148281310.1080/02640414.2018.148281329897306]Search in Google Scholar
[Leicht, A. S., Gomez, M. A., & Woods, C. T. (2017). Explaining match outcome during the men’s basketball tournament at the olympic games. J Sports Sci Med, 16(4), 468-473.]Search in Google Scholar
[Li, X., Huang, H., Wang, J., Yu, Y., & Ao, Y. (2016). The analysis of plantar pressure data based on multimodel method in patients with anterior cruciate ligament deficiency during walking. Biomed Res Int, 2016, 7891407. doi:10.1155/2016/789140710.1155/2016/7891407516855128050565]Search in Google Scholar
[Limayem, M., & DeSanctis, G. (2000). Providing decisional guidance for multicriteria decision making in groups. Information Systems Research, 11(4), 386-401. Retrieved from http://www.jstor.org/stable/2301104410.1287/isre.11.4.386.11874]Search in Google Scholar
[Link, D., & Hoernig, M. (2017). Individual ball possession in soccer. PLoS ONE, 12(7), e0179953. doi:10.1371/journal.pone.017995310.1371/journal.pone.0179953550322528692649]Search in Google Scholar
[Lopez-Valenciano, A., Ayala, F., Puerta, J. M., MBA, D. E. S. C., Vera-Garcia, F. J., Hernandez-Sanchez, S., . . . Myer, G. D. (2018). A preventive model for muscle injuries: a novel approach based on learning algorithms. Med Sci Sports Exerc, 50(5), 915-927. doi:10.1249/mss.000000000000153510.1249/MSS.0000000000001535658236329283933]Search in Google Scholar
[MacMahon, C., & McPherson, S. L. (2009). Knowledge base as a mechanism for perceptual-cognitive tasks: skill is in the details! International Journal of Sport Psychology, 40, 565–579.]Search in Google Scholar
[Maier, T., Meister, D., Trosch, S., & Wehrlin, J. P. (2018). Predicting biathlon shooting performance using machine learning. J Sports Sci, 1-7. doi:10.1080/02640414.2018.145526110.1080/02640414.2018.145526129565223]Search in Google Scholar
[Makridakis, S., Kirkham, R., Wakefield, A., Papadaki, M., Kirkham, J., & Long, L. (2019). Forecasting, uncertainty and risk; perspectives on clinical decision-making in preventive and curative medicine. International Journal of Forecasting, 35(2), 659-666. doi:https://doi.org/10.1016/j.ijforecast.2017.11.00310.1016/j.ijforecast.2017.11.003]Search in Google Scholar
[Maselli, A., Dhawan, A., Cesqui, B., Russo, M., Lacquaniti, F., & d’Avella, A. (2017). Where are you throwing the ball? I better watch your body, not just your arm! Front Hum Neurosci, 11, 505. doi:10.3389/fnhum.2017.0050510.3389/fnhum.2017.00505567493329163094]Search in Google Scholar
[Mason, R. O., & Mitroff, I. I. (1973). A program for research on management information systems. Manage Sci, 19(5), 475–487.10.1287/mnsc.19.5.475]Search in Google Scholar
[Mawhinney, C. H., & Lederer, A. L. (1990). A study of personal computer utilization by managers. Information & mangement, 18(5), 243-253.10.1016/0378-7206(90)90026-E]Search in Google Scholar
[McNichol, D. (2018). On average, you’re using the wrong average: geometric & harmonic means in data analysis. Retrieved from https://towardsdatascience.com/on-average-youre-using-the-wrong-average-geometric-harmonic-means-in-data-analysis-2a703e21ea0]Search in Google Scholar
[Montazemi, A. R., Wang, F., Khalid Nainara, S. M., & Barta, C. K. (1996). On the effectiveness of decisional guidance. Decision Support Systems, 18(2), 181-198. doi:10.1016/0167-9236(96)00038-310.1016/0167-9236(96)00038-3]Search in Google Scholar
[Montgomery, A. (2005). The implementation challenge of pricing decision support systems for retail managers. Appl Stochastic Models Bus Indust, 27(4-5), 367-378.10.1002/asmb.572]Search in Google Scholar
[Montoliu, R., Martin-Felez, R., Torres-Sospedra, J., & Martinez-Uso, A. (2015). Team activity recognition in association football using a bag-of-words-based method. Hum Mov Sci, 41, 165-178. doi:10.1016/j.humov.2015.03.00710.1016/j.humov.2015.03.00725816795]Search in Google Scholar
[Morana, S., Schacht, S., Scherp, A., & Maedche, A. (2014). Conceptualization and typology of guidance in information systems. Working Paper Series in Information Systems. University of Mannheim., 7, 1-13.]Search in Google Scholar
[Morgulev, E., & Galily, Y. (2018). Choking or delivering under pressure? the case of elimination games in NBA playoffs. Front Psychol, 9(979). doi:10.3389/fpsyg.2018.0097910.3389/fpsyg.2018.00979600651929946290]Search in Google Scholar
[Myung, I. J. (2000). The importance of complexity in model selection. J Math Psychol, 44(1), 190-204. doi:10.1006/jmps.1999.128310.1006/jmps.1999.128310733864]Search in Google Scholar
[Nagata, T., Nakamura, N., Miyatake, M., Yuuki, A., Yomo, H., Kawabata, T., & Hara, S. (2016). VO2 estimation using 6-axis motion sensor with sports activity classification. Conf Proc IEEE Eng Med Biol Soc, 2016, 4735-4738. doi:10.1109/embc.2016.759178510.1109/EMBC.2016.759178528269329]Search in Google Scholar
[Novatchkov, H., & Baca, A. (2013). Artificial intelligence in sports on the example of weight training. J Sports Sci Med, 12(1), 27-37.]Search in Google Scholar
[Ofoghi, B., Zeleznikow, J., Macmahon, C., & Dwyer, D. (2013). Supporting athlete selection and strategic planning in track cycling omnium: A statistical and machine learning approach. Inf. Sci., 233, 200-213. doi:10.1016/j.ins.2012.12.05010.1016/j.ins.2012.12.050]Search in Google Scholar
[Ofoghi, B., Zeleznikow, J., Macmahon, C., Rehula, J., & Dwyer, D. B. (2016). Performance analysis and prediction in triathlon. J Sports Sci, 34(7), 607-612. doi:10.1080/02640414.2015.106534110.1080/02640414.2015.106534126177783]Search in Google Scholar
[Olade, R. A. (2004). Strategic collaborative model for evidence-based nursing practice. Worldviews Evid Based Nurs, 1(1), 60-68. doi:10.1111/j.1741-6787.2004.04003.x10.1111/j.1741-6787.2004.04003.x17147759]Search in Google Scholar
[Parasuraman, R., & Riley, V. (1997). Humans and automation: use, misuse, disuse, abuse. Human Factors: The Journal of the Human Factors and Ergonomics Society, 39(2), 230-253.10.1518/001872097778543886]Search in Google Scholar
[Parikh, M., Fazlollahi, B., & Verma, S. (2001). The effectiveness of decisional guidance: an empirical evaluation. Decision Sciences, 32(2), 303-332. doi:10.1111/j.1540-5915.2001.tb00962.x10.1111/j.1540-5915.2001.tb00962.x]Search in Google Scholar
[Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. J Biomed Inform, 58, 145-155. doi:10.1016/j.jbi.2015.09.02010.1016/j.jbi.2015.09.02026453822]Search in Google Scholar
[Pidun, T., & Felden, C. (2011). Limitations of performance measurement systems based on key performance indicators. Paper presented at the AMCIS.]Search in Google Scholar
[Plous, S. (1993). The psychology of judgment and decision Making. New York: McGraw-Hill.]Search in Google Scholar
[Price, R., & Shanks, G. (2005). A semiotic information quality framework fevelopment and comparative analysis. Journal of Information Technology, 20(2), 88-102. doi:https://doi.org/10.1057/palgrave.jit.200003810.1057/palgrave.jit.2000038]Search in Google Scholar
[Price, R., & Shanks, G. (2008). Data quality and decision making. In F. Burstein & C. W. Holsapple (Eds.), Handbook on Decision Support Systems: Springer-Verlag Berlin Heidelberg.]Search in Google Scholar
[Redman, T. (1997). Improve data quality for competitive advantage. Sloan Manag Rev, 36(2), 99–107]Search in Google Scholar
[Rein, R., & Memmert, D. (2016). Big data and tactical analysis in elite soccer: future challenges and opportunities for sports science. Springerplus, 5(1), 1410. doi:10.1186/s40064-016-3108-210.1186/s40064-016-3108-2499680527610328]Search in Google Scholar
[Rhee, C., & Rao, H. R. (2008). Evaluation of decision support systems. In F. Burstein & C. W. Holsapple (Eds.), Handbook on Decision Support Systems: Springer-Verlag Berlin Heidelberg.]Search in Google Scholar
[Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: explaining the predictions of any classifier. Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.10.1145/2939672.2939778]Search in Google Scholar
[Richter, C., King, E., Falvey, E., & Franklyn-Miller, A. (2018). Supervised learning techniques and their ability to classify a change of direction task strategy using kinematic and kinetic features. J Biomech, 66, 1-9. doi:10.1016/j.jbiomech.2017.10.02510.1016/j.jbiomech.2017.10.02529146284]Search in Google Scholar
[Rindal, O. M. H., Seeberg, T. M., Tjonnas, J., Haugnes, P., & Sandbakk, O. (2017). Automatic classification of sub-techniques in classical cross-country skiing using a machine learning algorithm on micro-sensor data. Sensors (Basel), 18(1). doi:10.3390/s1801007510.3390/s18010075579594529283421]Search in Google Scholar
[Robertson, S., Bartlett, J. D., & Gastin, P. B. (2016). Red, amber or green? athlete monitoring in team sport: the need for decision support systems. Int J Sports Physiol Perform, 1-24. doi:10.1123/ijspp.2016-054110.1123/ijspp.2016-054127967289]Search in Google Scholar
[Robertson, S., & Joyce, D. (2018). Evaluating strategic periodisation in team sport. J Sports Sci, 36(3), 279-285. doi:10.1080/02640414.2017.130031510.1080/02640414.2017.130031528266908]Search in Google Scholar
[Robertson, S. J., & Joyce, D. G. (2015). Informing in-season tactical periodisation in team sport: development of a match difficulty index for Super Rugby. J Sports Sci, 33(1), 99-107. doi:10.1080/02640414.2014.92557210.1080/02640414.2014.92557224977714]Search in Google Scholar
[Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernandez, J., & Medina, D. (2018). Effective injury forecasting in soccer with GPS training data and machine learning. PLoS ONE, 13(7), e0201264. doi:10.1371/journal.pone.020126410.1371/journal.pone.0201264605946030044858]Search in Google Scholar
[Rouse, M. (2018). Machine learning bias (algorithm bias or AI bias). Retrieved from https://searchenterpriseai.techtarget.com/definition/machine-learning-bias-algorithm-bias-or-AI-bias]Search in Google Scholar
[Ruddy, J. D., Shield, A. J., Maniar, N., Williams, M. D., Duhig, S., Timmins, R. G., . . . Opar, D. A. (2018). Predictive modeling of hamstring strain injuries in elite australian footballers. Med Sci Sports Exerc, 50(5), 906-914. doi:10.1249/mss.000000000000152710.1249/MSS.000000000000152729266094]Search in Google Scholar
[Safdar, S., Zafar, S., Zafar, N., & Khan, N. F. (2017). Machine learning based decision support systems (DSS) for heart disease diagnosis: a review. Artificial Intelligence Review, 1-27.]Search in Google Scholar
[Sampaio, J., McGarry, T., Calleja-Gonzalez, J., Jimenez Saiz, S., Schelling, X., & Balciunas, M. (2015). Exploring game performance in the National Basketball Association using player tracking data. PLoS ONE, 10(7), e0132894. doi:10.1371/journal.pone.013289410.1371/journal.pone.0132894450183526171606]Search in Google Scholar
[Sanders, N. R., & Manrodt, K. B. (2003). Forecasting software in practice: use, satisfaction, and performance. Interfaces, 33(5), 90-93. Retrieved from http://www.jstor.org/stable/2014128910.1287/inte.33.5.90.19251]Search in Google Scholar
[Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289-310. doi:10.1214/10-sts33010.1214/10-STS330]Search in Google Scholar
[Siddall, M. E. (2002). Parsimony analysis. In R. DeSalle, G. Giribet, & W. Wheeler (Eds.), Techniques in Molecular Systematics and Evolution. Methods and Tools in Biosciences and Medicine. Basel: Birkhäuser.]Search in Google Scholar
[Silver, M. (2006). Decisional guidance. Broadening the scope. Advances in Management Information Systems, 6, 90–119.]Search in Google Scholar
[Silver, M. S. (1991). Decision guidance for computer based decision support. MIS Quart, 15(105-122).10.2307/249441]Search in Google Scholar
[Silver, M. S. (2008). On the design features of decision support systems: the role of system restrictiveness and decisional guidance. In F. Burstein & C. W. Holsapple (Eds.), Handbook on Decision Support Systems: Springer-Verlag Berlin Heidelberg.]Search in Google Scholar
[Simon, H. A. (1956). Rational Choice and the Structure of the Environment. Psychological Review, 63(2), 129–138.10.1037/h004276913310708]Search in Google Scholar
[Simon, H. A. (1978). Rational decision-making in business organizations. Nobel memorial lecture. Retrieved from http://nobelprize.org/nobel_prizes/economics/laureates/1978/simon-lecture.pdf]Search in Google Scholar
[Sprague, R. H. (1980). A framework for the development of decision support systems. MIS Quarterly, 4(4), 1-26.10.2307/248957]Search in Google Scholar
[Springer, A., Garcia-Gathright, J., & Cramer, H. (2018). Assessing and addressing algorithmic bias — but before we get there. Paper presented at the 2018 AAAI Spring Symposium Series, Stanford University. https://www.aaai.org/ocs/index.php/SSS/SSS18/paper/viewFile/17542/15470]Search in Google Scholar
[Swalin, A. (2018). Choosing the right metric for evaluating machine learning models—Part 1. Retrieved from https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4]Search in Google Scholar
[Taha, Z., Musa, R. M., Abdul Majeed, A., Alim, M. M., & Abdullah, M. R. (2018). The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach. Hum Mov Sci, 57, 184-193. doi:10.1016/j.humov.2017.12.00810.1016/j.humov.2017.12.00829248809]Search in Google Scholar
[Thornton, H. R., Delaney, J. A., Duthie, G. M., & Dascombe, B. J. (2017). Importance of various training-load measures in injury incidence of professional rugby league athletes. Int J Sports Physiol Perform, 12(6), 819-824. doi:10.1123/ijspp.2016-032610.1123/ijspp.2016-032627918659]Search in Google Scholar
[Torres-Ronda, L., & Schelling, X. (2017). Critical process for the implementation of technology in sport organizations. Strength and Conditioning Journal, 39(6), 54-59. doi:10.1519/ssc.000000000000033910.1519/SSC.0000000000000339]Search in Google Scholar
[Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science, 185(4157), 1124-1131. doi:10.1126/science.185.4157.112410.1126/science.185.4157.112417835457]Search in Google Scholar
[Valatavičius, A., & Gudas, S. (2017). Towards the deep, knowledge-based interoperability of applications. Informacijos Mokslai, 79, 83-113.10.15388/Im.2017.79.11400]Search in Google Scholar
[VV.AA. (2018). OxfordDictionaries.com. Retrieved from https://en.oxforddictionaries.com/definition/overfitting]Search in Google Scholar
[Wali Van Lohuizen, C. W. (1986). Knowledge management and policymaking. Knowledge, 8(1), 12-38. doi:10.1177/10755470860080010210.1177/107554708600800102]Search in Google Scholar
[Walther, B. A., & Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28, 815-829.10.1111/j.2005.0906-7590.04112.x]Search in Google Scholar
[Whiteside, D., Cant, O., Connolly, M., & Reid, M. (2017). Monitoring hitting load in tennis using inertial sensors and machine learning. Int J Sports Physiol Perform, 12(9), 1212-1217. doi:10.1123/ijspp.2016-068310.1123/ijspp.2016-068328182523]Search in Google Scholar
[Whiteside, D., & Reid, M. (2017). Spatial characteristics of professional tennis serves with implications for serving aces: A machine learning approach. J Sports Sci, 35(7), 648-654. doi:10.1080/02640414.2016.118380510.1080/02640414.2016.118380527189847]Search in Google Scholar
[Witten, I. A., Frank, E., & Hall, M. A. (2011). Data mining. Practical machine learning tools and techniques (Third ed.). Burlington, Massachussetts, USA.: Elsevier.]Search in Google Scholar
[Woods, C. T., Veale, J., Fransen, J., Robertson, S., & Collier, N. F. (2018). Classification of playing position in elite junior Australian football using technical skill indicators. J Sports Sci, 36(1), 97-103. doi:10.1080/02640414.2017.128262110.1080/02640414.2017.128262128125339]Search in Google Scholar
[Wundersitz, D. W., Josman, C., Gupta, R., Netto, K. J., Gastin, P. B., & Robertson, S. (2015). Classification of team sport activities using a single wearable tracking device. J Biomech, 48(15), 3975-3981. doi:10.1016/j.jbiomech.2015.09.01510.1016/j.jbiomech.2015.09.01526472301]Search in Google Scholar
[Xie, J., Xu, J., Nie, C., & Nie, Q. (2017). Machine learning of swimming data via wisdom of crowd and regression analysis. Math Biosci Eng, 14(2), 511-527. doi:10.3934/mbe.201703110.3934/mbe.201703127879112]Search in Google Scholar
[Zhang, J., Lockhart, T. E., & Soangra, R. (2014). Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Ann Biomed Eng, 42(3), 600-612. doi:10.1007/s10439-013-0917-010.1007/s10439-013-0917-0394349724081829]Search in Google Scholar